+34 679 490 537info@nanbiosis.com

Nanbiosis

MATERPLAT Launches the document “Spanish Technological Strategy of Advanced Materials and Nanomaterials – MATERPLAT”

MATERPLAT, the Technological Platform of Advanced Materials and Nanomaterials, has presented the “Spanish technological strategy of advanced materials and nanomaterials” in whose preparation NANBIOSIS has participated. This document seeks to collect and reflect the technological challenges, needs and barriers associated with industrial sectors that clearly require innovation in advanced materials, as well as in their processes and / or products, to ensure their competitiveness, sustainability and growth.

For further information:

 

Read More

The Minimally Invasive Surgery Centre uses HoloLens glasses for medical training and surgical assistance in urology

The Minimally Invasive Surgery Centre, partner of NANBIOSIS,  has developed a software platform to apply mixed reality to medical training and surgical assistance. This will enable the creation of new and more realistic scenarios for medical training and improve surgical results.

The Minimally Invasive Surgery Centre (CCMIJU) uses mixed reality technology, by means of the Microsoft’s HoloLens glasses, to help train future healthcare professionals and provide an assistance tool for complex surgeries.

The institution located in Cáceres has begun using the mixed reality glasses, whose technology combines virtual reality with augmented reality, with the aim of developing, on the one hand, a medical training platform for the anatomy of the pelvic floor, and on the other, a tool for surgical assistance during renal tumor resection procedures.

The use of this technology will benefit both medical students and residents, as well as surgeons. For the former, a software application has been developed and integrated in the HoloLens glasses, that will allow them to visualize and interact with the human anatomy of the pelvis -with and without pathologies- both at muscular, vascular, bone and nervous systems levels. This will facilitate its translation to the real medical practice.

As for the surgeons, this technology will provide access to preoperative studies and real 3D models of the patient in the form of virtual holograms, facilitating the surgical planning and assistance during the abovementioned renal interventions.

The software, developed entirely at the CCMIJU, is in its validation phase in operating rooms. For the first time, and using their own 3D anatomical models, this type of technology is being used for training on the pelvic floor anatomy and for surgical assistance in renal tumor resections.

This R&D line arises from public-private cooperation. The CCMIJU’s team, led by Dr. Francisco Miguel Sánchez Margallo, Scientific Director of this institution, consists of engineers and staff of the Interactive 3D Unit of the Centre who work together with the company CIBEX on the development of new surgical applications. This alliance will enable healthcare professionals to use this emerging technology in challenging surgical interventions and carry out more effective and safe surgeries.

Read More

Pablo Laguna New Elevated IEEE Fellow for his contributions to cardiac biomedical signal processing

Pablo Laguna, Scientific Director of NANBIOSIS Unit 27, has recently been appointed as a select member (IEEE fellow) of the Institute of Electrical and Electronics Engineers within the society of Medical Engineering and Biology -IEEE-EMBS-.

The grade of Fellow recognizes unusual distinction in the profession and is conferred only by invitation of the IEEE Board of Directors upon a person with an extraordinary record of accomplishments in any of IEEE’s designated fields of interest, in this case, Dr. Laguna is recognized for his contributions to cardiac biomedical signal processing.

The IEEE-EMBSis the world’s largest international society of biomedical engineers. The 11,000 members of the organization reside in some 97 countries around the world. EMBS provides its members access to people, information, ideas and opinions that are shaping one of the fastest growing fields in science.

Pablo Laguna is Professor of Signal Theory and Communications at the School of Engineering and Architecture (EINA) and group leader of the CIBER-BBN and University of Zaragoza research group BSICoS . His work focuses on the search of non-invasive indexes to predict the risk of arrhythmias, the modeling and simulation of cardiac electrophysiology, the evaluation and quantification of the activity of the autonomic nervous system and the processing and characterization of biomedical signals in respiratory pathologies. He has been Scientific Director of the CIBER-BBN from 2011 to 2015.

Read More

Inkjet-Printed Sulfide-Selective Electrode

Gemma Gabriel, Scientific Coordinator of Unit 8 of NANBIOSIS is coauthor of the article  “Inkjet-Printed Sulfide-Selective Electrode” recently publish by ACS Publications in Analitical Chemistry.  Anal. Chem.201789 (22), pp 12231–12236  

DOI: 10.1021/acs.analchem.7b03041

 

 

 

Read More

NANBIOSIS at CIBEREHD XI Annual Conferences

Jesús Izco, Coordinator of NANBIOSIS, has presented NANBIOSIS-ICTS at the XI annual Conference of  CIBEREHD, which takes place from 27 to 28 November 2017 at the Hotel Barceló Sants in Barcelona.

Jesús Izco has explained the opportunities offered by the ICTS NANBIOSIS as a Platform for Research and Biomedical Innovation, giving examples of private-public collaboration in competitive calls  in which NANBIOSIS has participated and explaining the design of the new Nanomedicine Cascade Characterization Service, in which NANBIOSIS is working on.

CIBEREHD (Center for biomedical research in liver and digestive diseases) is

The CIBER’s thematic area of Liver and Digestive Diseases (CIBEREHD) has the purpose of promoting and protecting health by furthering research. This work, whose scope includes both basic research and clinical and translational aspects, is based on the field of Liver and Digestive Diseases with the aim of innovating in the prevention of these diseases and promoting scientific and healthcare progress. At present the CIBEREHD is working on four corporate programmes:

P1. Mechanisms of liver damage/evolution into advanced cirrhosis and transplant.

P2. Gastrointestinal physiopathology: inflammatory illness and motility disorders.

P3. Epidemiology, prevention and treatment of viral hepatitis infection.

P4. Liver and Digestive Oncology

 

Read More

U26-S05. Training Advice and assistance (On-site&Remote)

Training Advice and assistance (On-site&Remote)

Read More

Design of parenteral MNP-loaded PLGA nanoparticles by a low-energy emulsification approach as theragnostic platforms for intravenous or intratumoral administration

Encapsulation of magnetic nanoparticles (MNP) into PLGA nanoparticles has been achieved by nano-emulsion templating using for the first time both, a low-energy emulsification method as well as biocompatible components accepted for pharmaceuticals intended for human use. The incorporation of MNP by nano-emulsion templating method proposed in this work has been investigated in two different systems applying mild process conditions and is shown to be simple and versatile, providing stable MNP-loaded PLGA nanoparticles with tunable size and MNP concentration. MNP-loaded PLGA nanoparticles showed sizes below 200 nm by DLS and 50 nm by TEM, and mean MNP loading per PLGA nanoparticle of 1 to 4, depending on the nanoparticle dispersion composition. Physical-chemical features suggest that the MNP-loaded PLGA nanoparticles obtained are good candidates for intravenous or intratumoral administration.

The equipment of Dynamic Light Scattering (Dynamic Light Scattering) of NANBIOSIS Unit 12 has been used to determine the size distribution of polymer particles and Microscopy with Hyperspectral Analysis (Hyperspectral enhanced dark field microscopy) to detect the encapsulation of magnetic nanoparticles in polymer particles.

Article of reference:

https://doi.org/10.1016/j.colsurfb.2017.09.060

Graphical abstract: Schematic representation of the preparation process of Fe3O4 MHighlightsN P-loaded PLGA nanoparticles by nano-emulsion templating.

Read More

Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery

Unit 1 of NANBIOSIS, Protein Production Platform (PPP) and the  Nanobiotechnology research group of CIBER-BBN in collaboration with the Universidade Estadual de Campinas and the Universidade de São Paulo have recently published, in the European Journal of Pharmaceutical Sciences, the results of the research devoted to the improvement of protein-only based nanoconjugates for gene therapy. The evaluated gene-therapy vehicle prototype  displayed a similar transfection efficiency to that of the commercial vector LipofectamineTM 2000.

Article of reference:

https://doi.org/10.1016/j.ejps.2017.11.002

Read More

Unit 13 of NANBIOSIS participates in a new European project that will boost the Organ-on-Chip technology

The research group coordinating NANBIOSIS Unit 13 is the Spanish group of the European project ORCHID (Organ-On-Chip In Development). The scientists  of Engineering Research Institute (I3A) and CIBER-BBN, Luis Fernández and Iñaki Ochoa, will work on this project whose objective is to accelerate the social and economic impact of the technology known as Organ-on-Chip. This technology based on the use of microfluidic platforms is already facilitating the discovery of drugs, but it can go a step further with applications in personalized medicine and safety pharmacology and that, in addition, offers alternatives to conventional tests in animals. The mechanical properties and research ability of the microfluidic platforms will be tested in NANBIOSIS  unit U13 Tissue and Scaffold Characterization.

 

The project that will take place over two years, is led by the Medical Center of the University of Leiden and the Dutch consortium Organ-on-Chip hDMT and participated by entities and research centers from four other countries, Germany, Belgium, France and the Netherlands. The consortium that has the financial support of the European Union with half a million euros, will work to facilitate and accelerate the development of prototypes, validated cellular systems that mimic sick or healthy human tissue and the implementation of this technology by a broad group of potential users in science, health care and industry. This platform will provide an overview and updates so that users can easily track progress, consult developers directly and identify gaps in current knowledge, which limits implementation. It will also address ethical and regulatory issues, particularly with regard to personalized information, the economic and social impact, the training of researchers and the design of a R & D “roadmap”.

 

Likewise, the construction of an infrastructure is planned so that scientists, policy makers, financiers and end users can join the decision-making processes that will guide future European developments in Organ-on-Chip applications. Among its actions is the establishment of a digital platform that allows the exchange of knowledge between researchers and representatives of private corporations, including insurance companies, pharmaceutical and biotechnology companies, the food industry, health foundations and patient organizations.

Read More

Posters presentation by NANBIOSIS Units in CIBER-BBN ANNUAL CONFERENCE 2017

Last 13 and 14 of November, CIBER-BBN  has celebrated its 11th Annual Conference in Hotel Santemar in Santander. In this conference there was a poster session with the participation of the following Units of NANBIOSIS. Special mention deserves Unit 1 with Neus Ferrer as Director and  Paolo Saccardo as Coordinator (in the picture):

Posters:

U1. Protein Production Platform (PPP):

Engineering protein complexes as nano- or micro-structured vehicles or drugs for human and veterinary medicine. Ugutz Unzueta, Naroa Serna, Laura Sánchez-García, José Vicente Carratalá, Olivia Cano-Garrido, Mercedes Márquez, Paolo Saccardo, Rosa Mendoza, Raquel Díaz, Héctor, López-Laguna, Julieta Sánchez, Anna Obando, Amanda Muñoz, Andrés Cisneros, Eric Voltà, Aida Carreño, José Luis Corchero, Neus Ferrer-Miralles, Esther Vázquez, Antonio Villaverde.

Units  U1. Protein Production Platform (PPP) and U18. Nanotoxicology Unit:

Intrinsic functional and architectonic heterogeneity of tumor-targeted protein nanoparticles. Mireia Pesarrodona, Eva Crosa, Rafael Cubarsi, Alejandro Sanchez-Chardi, Paolo Saccardo, Ugutz Unzueta, Fabian Rueda, Laura Sanchez-Garcia, Naroa Serna, Ramón Mangues, Neus Ferrer Miralles, Esther Vázquez, Antonio Villaverde.

Units U3. Synthesis of Peptides UnitU6. Biomaterial Processing and Nanostructuring Unit, and U20. In Vivo Experimental Platform:

Synthesis of different length monodisperse COL-PEG-PEPTIDE to increase biodisponibility of multifunctional nanovesicles for Fabry’s desease. Edgar Cristóbal-Lecina; Daniel Pulido; Solène Passemard; Elizabet González-Mira; Jaume Veciana; Nora Ventosa; Simó Schwartz; Ibane Abasolo; Fernando Albericio and Miriam Royo.

Units U13. Tissue & Scaffold Characterization Unit and U17. Confocal Microscopy Service::

Preclinical behavior of medium-chain cyanoacrylate glue with two different surgical application forms for mesh fixation in abdominal wall repair. Gemma Pascual, Bárbara Pérez-Köhler, Marta Rodríguez, Claudia Mesa-Ciller, Ángel Ortillés, Estefanía Peña, Begoña Calvo, Juan M. Bellón.

Units U27. High Performance Computing and U8. Micro – Nano Technology Unit:

Inspiration and Expiration Dynamics in Acute Emotional Stress Assessment. Javier Milagro, Eduardo Gil, Jorge M. Garzón-Rey, Jordi Aguiló, Raquel Bailón.

U5. Rapid Prototyping Unit:

Poly-DL-lactic acid films functionalized with collagen IV as carrier substrata for corneal epithelial stem cells. Ana de la Mata, Miguel Ángel Mateos-Timoneda, Teresa Nieto-Miguel, Sara Galindo, Marina López-Paniagua, Xavier Puñet, Elisabeth Engel, Margarita Calonge.

U6. Biomaterial Processing and Nanostructuring Unit:

Strategy for engineering myoglobin nano-traps for biomedical sensing technology. E. Laukhina, O. V. Sinitsyna, N. K. Davydova, V. N. Sergeev, A. Gomez, I. Ratera, C. Blázquez Bondia, J. Paradowska, X. Rodriguez, J. Guasch, Jaume Veciana.

Structure and nanomechanics of quatsome membranes. B. Gumí-Audenis, L. PasquinaLemonche, J.A. Durán, N. Grimaldi, F. Sanz, J. Veciana, I. Ratera, N. Ventosa and M.I. Giannotti

U7. Nanotechnology Unit:

Bioreceptors nanostructuration study for early detection of Alzheimer. José Marrugo, Dr. Samuel Dulay, Dr. Mònica Mir, Prof. Josep Samitier.

RGD dendrimer-based nanopatterns promote chondrogenesis and intercellular communication for cartilage regeneration. Ignasi Casanellas, Anna Lagunas, Iro Tsintzou, Yolanda Vida, Daniel Collado, Ezequiel Pérez-Inestrosa, Cristina Rodríguez, Joana Magalhães, José A. Andrades, José Becerra, Josep Samitier.

Long-range electron transfer between redox partner proteins. Anna Lagunas, Alejandra GuerraCastellano, Alba Nin-Hill, Irene Díaz-Moreno, Miguel A. De la Rosa, Josep Samitier, Carme Rovira, Pau Gorostiza.

U8. Micro – Nano Technology Unit:

Miniaturized multi-sensing platform for pH and Dissolved Oxygen monitoring in Organ-On-aChip systems. M. Zea, A. Moya, I. Gimenez, R. Villa, G. Gabriel.

Electrochemical characterization of SWCNTs based microelectrodes fabricated by inkjet printing. M. Mass, A. Moya, G. Longinotti, M. Zea, M. Muñoz, E. Ramon, L. Fraigi, R. Villa, G. Ybarra, G. Gabriel.

U9. Synthesis of Nanoparticles Unit:

In vivo imaging and local persistance of polymeric micro- and nanomaterials labelled with the near infrared dye IR820. Isabel Ortiz de Solórzano, Gracia Mendoza, Inmaculada Pintre, Sara García-Salinas, Víctor Sebastián, Vanesa Andreu, Marina Gimeno, Manuel Arruebo.

U10. Drug Formulation:

Cationic nioplexes-in-polysaccharide-based hydrogels as versatile biodegradable hybrid materials to deliver nucleic acids. Santiago Grijalvo, Adele Alagia, Gustavo Puras, Jon Zárate, Judith Mayr, José Luis Pedraz, Ramon Eritja

U12. Nanostructured liquid characterization unit:

Perfluorocarbon-loaded Nanocapsules from Nano-emulsion Templates as Microbubble Precursors for Biomedical Applications. G. Calderó, A. González, M. Monge, C. Rodríguez-Abreu, M.J.García-Celma, C. Solans.

Biodistribution study of polymeric drug-loaded nanoparticles in murine model. Marta Monge, Aurora Dols, Stephane Fourcade, Aurora Pujol, Carlos Rodríguez-Abreu, Conxita Solans.

U16. Surface Characterization and Calorimetry Unit:

Behavior and a comparative study between tantalum and titanium alloy implant surfaces against bacterial adhesion. M.A. Pacha-Olivenza, M.L. González-Martín.

Bacterial adhesion on calcium ion-modified titanium implant surfaces. M.A. Pacha Olivenza, R. Tejero, M. Delgado-Rastrollo, M.L. González-Martín.

Bioactive coatings to promote tissue regeneration and ingrowth into 3D custom-made porous titanium endoimplants (COATREG-3D). Santos-Ruiz L; Granados JF; Ruiz F; Yáñez JI; González A; Cabeza N; Vida Y; Pérez-Inestrosa E; Izquierdo-Barba I; Vallet-Regí M; Rubio J; Orgaz F; Rubio N; González ML; Peris JL; Monopoli D; Becerra J.

U17. Confocal Microscopy Service:

Subcutaneous implantation of a biodegradable apatite/agarose scaffold: biocompatibility and osteogenesis characterization in a rat model. Natalio García-Honduvilla, Gemma Pascual, Miguel A. Ortega, Alejandro Coca, Cynthia Trejo, Jesús Román, Juan Peña, María V. Cabañas, Julia Buján, and María Vallet-Regí.

U25. NMR: Biomedical Applications I:

Dual T1/T2 NCP-based novel contrast agents for brain tumor MRI: a preclinical study. Suarez, S; Arias-Ramos, N; Candiota, AP; Lorenzo, J; Ruiz-Molina, D; Arús, C; Novio, F.

Metronomic treatment in immunocompetent preclinical GL261 glioblastoma: effects of cyclophosphamide and temozolomide. Ferrer-Font, L; Arias-Ramos, N; Lope-Piedrafita, S; Julià- Sapé, M; Pumarola, M; Arús, C; Candiota, AP.

U26. NMR: Biomedical Applications II:

Gated nanodevices for innovative medical therapies. Maria Alfonso, Irene Galiana, Beatriz Lozano, Borja Diaz de Greñu, Cristina de la Torre, Andrea Bernardos, Sameh El Sayed, Daniel MuñozEspin, Miguel Rovira, José Ramón Murguía, Manuel Serrano, Ramón Martínez-Máñez.

NANOPROBE: Gated sensing materials and devices for the detection of infectious diseases and urological cancer. Ángela Ribes, Luís Pla, Sara Santiago-Felipe, Alba Loras-Monfort, M.Carmen Martínez-Bisbal, Elena Aznar, Guillermo Quintás-Soriano, José Luis Ruiz-Cerdá, María Angeles.

 

 

 

Read More
Nanbiosis