+34 620 10 75 37info@nanbiosis.com

News

nanbiosis news

Maastricht Simulation Award to Konstantinos Mountris and Esther Pueyo

Konstantinos Mountris and Esther Pueyo, (NANBIOSIS Unit 27 High Performance Computing), have been awarded with the Maastricht Simulation Award for their participation in the CinC 2020.

Researchers of BSICoS Group, from CIBER-BBN and I3A of Zaragoza University, have participated in the 47 Computing in Cardiology Conference, which took place in Rimini, Italy, during the days 13-16 of September. Alba Martín, was awarded with the Best Remote Poster Presentation for the poster entitled “Model-based characterization of atrial fibrilation episodes and its clinical association“. And the work “Next-generation in-silico Cardiac Electrophysiology through Immersed Grid Meshfree Modelling. Application to Simulation of Myocardial Infarctionby Konstantinos Mountris and Esther Pueyo has been awarded with the CinC Maastricht Simulation Award (MSA).

This work proposes a novel Meshfree Immersed Grid method for cardiac electrophysiology simulation and its application in the simulation of myocardial infarction. Usually, cardiac electrophysiology simulation is performed using mesh-based techniques like the Finite Element Method. Such techniques implicate the generation of a mesh discretization of the domain of interest that can be a time-consuming process, especially for complex anatomical models. The Meshfree Immersed Grid alleviates the necessity for mesh generation and allows eliminating the mesh-related limitations. Using the HPC services of NANBIOSIS U27 High Performance Computing, – explains Konstantinos Mountris – we were able to validate the Meshfree Immersed Grid method as a promising alternative to Finite Element Method performing large-scale simulations of myocardial infarction in biventricular swine models.

The goal of this award (and its $500 prize) is to recognize the best submission to the conference each year on the topic of cardiovascular simulations.

2020 Is the second consecutive edition of the CinC Conference in wich members of Bsicos Group and NANBIOSIS U27 are awarded with the MSA. In 2019 the winner was Violeta Monasterio with the work Influence of the Stimulation Current on the Differences between Cell and Tissue Electrophysiological Simulations.

Read More

OITBs OPEN CALL TO FIGHT COVID19 – SafeNMT OITB project

JOINT OITBS OPEN CALL TO FIGHT COVID 19

SAFE-N-MEDTECH OITB project in which CIBER-BBN is a partner througth its ICTS NANBIOSIS, gathers expertise from 28 partners around the World focused in enabling the safe translation of nano-enabled medical technologies from Proof of Concept to markets and clinical practice. The sudden COVID-19 outbreak has meant an unforeseen challenge that requires rapid answers from the Science, Technology and Innovation Community. These is a framework where SafeNMT could deploy all its potential: first, because nanotechnology is a Key Enabling Technology that can contribute to innovative approaches to fight COVID 19 and/or other viral pandemics. Second, because the integration of capabilities in SafeNMT should be a key driver to integrate, accelerate and translate nanotechnology innovations from TRLs 4-5 to TRLs 6-7.

In this context, and in the frame of the Joint OITBs Open Call to fight COVID 19, we aim in opening our services, at no cost, for selected proposals which accomplish the following conditions:

  • Innovations for prevention, diagnostic and/or therapy for COVID 19 based on the use of nanotechnology applied to Medical Devices and In Vitro Diagnostic
  • The expressions of interest should present a solid S&T background and a sufficient technological maturity (starting TRLs 4-5)
  • A clear development pathway, with an initial identification of product needs is encouraged

What we offer (non-exhaustive list, to be agreed with the selected expressions of interest – Consult the services in our catalogue):

  • First evaluation of the project/product based on Health Technology Assessment (HTA) and Healthcare system needs provided by our pool of experts
  • Technology scanning to identify redundancies/synergies
  • Nanomaterial characterization
  • In vitro preclinical research
  • Access to clinical samples and Biobanks
  • Assistance in prototyping and qualification of manufacturing facilities
  • Regulatory advice and support in the adapted European regulation for COVID 19 medical technologies
  • Links to clinical networks
  • Business development coaching, links with business angels, investors, capital risk, etc.

Typically, the project will cover costs related to activities mentioned above, according to the budget limits available. If outstanding expenses beyond the available budget are needed, these will need to be covered by the user. The project won’t be able to cover formal regulatory costs, production costs, clinical development costs or any external costs that might be needed for the testing and production of the nano-enabled Medical Technology/ies.
Please note that all information provided will be treated confidential and is stored only for the purpose of this call.

Submission deadline: October 2nd, 2020, 5:00 p.m. CET.

Applicants will be informed about the outcome of their application in mid October. Activities are envisaged to start beginning of November.
APPLY HERE!

Read More

Robust Conditional Independence maps of single-voxel Magnetic Resonance Spectra to elucidate associations between brain tumours and metabolites

Scientists of CIBER-BBN, Ana Paula Candiota and Margarida Juliá managing Nanbiosis ICTS U25 NMR: Biomedical Applications I have participated in the research carried out by Liverpool John Moores University and University of Valencia to elucidate associations between brain tumours and metabolites, published by the journal Plos One.

The aim of the paper is two-fold. First, to show that structure finding with the PC algorithm can be inherently unstable and requires further operational constraints in order to consistently obtain models that are faithful to the data. The authors propose a methodology to stabilise the structure finding process, minimising both false positive and false negative error rates. This is demonstrated with synthetic data. Second, to apply the proposed structure finding methodology to a data set comprising single-voxel Magnetic Resonance Spectra of normal brain and three classes of brain tumours, to elucidate the associations between brain tumour types and a range of observed metabolites that are known to be relevant for their characterisation. The data set is bootstrapped in order to maximise the robustness of feature selection for nominated target variables. Specifically, Conditional Independence maps (CI-maps) built from the data and their derived Bayesian networks have been used. A Directed Acyclic Graph (DAG) is built from CI-maps, being a major challenge the minimization of errors in the graph structure. This work presents empirical evidence on how to reduce false positive errors via the False Discovery Rate, and how to identify appropriate parameter settings to improve the False Negative Reduction. In addition, several node ordering policies are investigated that transform the graph into a DAG. The obtained results show that ordering nodes by strength of mutual information can recover a representative DAG in a reasonable time, although a more accurate graph can be recovered using a random order of samples at the expense of increasing the computation time.

Article of reference:

Robust Conditional Independence maps of single-voxel  Magnetic  Resonance  spectra  to  elucidate  associations  between  brain  tumours  and  metabolites. Raúl Vicente Casaña-Eslava, Sandra Ortega-Martorell, Paulo J. Lisboa, Ana Paula Candiota, Margarida Julià-Sapé, José David Martín-Guerrero, Ian H. Jarman 2020, PLoS ONE  https://doi.org/10.1371/journal.pone.0235057

Read More

CSIC publishes a report that summarizes the scientific knowledge on Covid-19 and the research projects

The Higher Council for Scientific Research (CSIC) has prepared a report that summarizes the most relevant scientific results on the Covid-19 pandemic. The document compiles results of international research and projects in execution of the 300 research groups of the CSIC Global Health Platform.

The report, entitled “A global vision of the Covid-19 pandemic: What we know and what we are investigating from CSIC“, is structured in five blocks: prevention, disease, containment and diagnosis, treatment and vaccines, and global impact.

Researchers of NANBIOSIS-ICTS units and CIBER-BBN at CSIC Centres participate in the researches carryed out and in the report.

This report is a continuously updated document whose versions will be published by CSIC

Source and further information: https://www.csic.es/en/node/1257181

Read More

NANBIOSIS U4 expands its capabilities with a upgrades

NANBIOSIS, U4 Biodeposition and Biodetection Unit has expanded its capabilities with two upgrades:

Upgrade of UV / Ozone cleaner for NanoeNabler and

Upgrade of the optics and the microfluidic components of the Biodetection Unit (SPR biosensor)

This upgrade and new equipment have been confinanced by the European Regional Development Fund (ERDF) through the Plurirregional Operational Program of Spain (POPE)2014-2020

European Regional Development Fund
Upgrade of UV / Ozone cleaner for NanoeNabler
Read More

The ATTRACT Online Conference open for registration

The on line Conference ATTRACT – Igniting the Deep Tech Revolution will take pace on 22-23 Sep 2020. The ATTRACT Online Conference website is now live! Please register before 28 August at https://attract-eu-conference.cern.b2match.io/

The ATTRACT Conference offers multiple opportunities to understand the dynamics and contribute to the emergence of a strong European deep tech ecosystem for detection and imaging technologies. The ATTRACT Project is an EC funded initiative led by a consortium of leading European research infrastructures and universities.

CIBERBBN and Nanbiosis are involved in MAGRes : Multiparametric MR approaches for non-invasive glioblastoma therapy response follow-up, one of the 170 projects using sensing and imaging technology
to enable breakthrough innovation funded by ATTRACT and headed by Ana Paula Candiota, Scientific Coordinator of NANBIOSIS U25 NMR: Biomedical Applications I

MAGRes Project:

Glioblastoma (GB) is the major aggressive primary brain tumour in adults showing disproportion between high mortality compared to low overall incidence. Survival after detection is below 18 months even after standard aggressive treatment and no cure has been reported. Novel therapies (e.g. immunotherapy) may be very expensive and it may be relevant to have in vivo, early efficiency, non-invasive imaging biomarkers (IB) to halt unsuccessful use of such therapeutic agents and allowing early evidence-based therapy-related decisions.

Researchers involved in Magret project believes that Magnetic Resonance (MR)-derived data (MRI, MRSI, i.e. imaging, spectroscopic imaging) can be translated into IB of successful GB therapy through in vivo monitoring.

MAGRes proposes a breakthrough innovative hashtag combining MRI and MRSI data acquisition. MRSI data will be used as decoding agent to translate MR-derived information into surrogate IB of successful therapeutic outcome, which definitely represents a step beyond in comparison with present follow-up therapy response strategies based in volume changes of the tumour mass.

The extremely large amount of multi-parametric data acquired for each preclinical subject (mice), longitudinal explorations with several acquisitions will allow us to benefit from powerful state-of-the-art multiparametric data analysis methods based on Deep-Learning (DL). This, together with feature selection and interpretation methods will lead to extraction of MR- based significant IB.

At present, there is no software approach allowing both fast, user-friendly post-processing of conventional MRI and MRSI, and encompassing sophisticated developments in the area of pattern recognition (PR), automated MRSI artifact removal, as well as the weighted combination of multi-parametric images.

Accordingly, MAGRes targets the development and implementation of user-friendly software with capabilities to compute 2D and 3D MR-derived parametric images and to visualise them overlaid on high resolution MR structural images. Moreover, this will be implemented in an open-source software imaging platform as a plugin, paving the way to a scalable system, which could also handle clinical patient data in the immediate future.

Read More

The University of Zaragoza, in the elite of the 500 best universities in the world

The Academic Ranking of World Universities (ARWU), known as
Shanghai Ranking, which was made public on August 15, once again places the University of Zaragoza among the elite of the 500 best universities in the world.

This indicator organizes up to 20,000 university centers worldwide. Among the keys that have been able to positively influence the results of the research, according to the Vice Chancellor for Prospect, Sustainability and Infrastructure of the University of Zaragoza, Francisco Serón, are the increase in public campus funding for four years as well as the quality of their Scientists.

The University of Zaragoza houses three of NANBIOSIS Units:

U9 Synthesis of Nanoparticles Unit, led by Jesús Santamaría and Gema Martínez

U13 Tissue & Scaffold Characterization Unit, led by Miguel Ángel Martínez Barca and Fany Peña

U27 High Performance Computing , led by Pablo Laguna

Since 2003, every August, the Academic Ranking of World Universities (ARWU), known as “Shanghai Ranking,” is published, one of the international reference studies to compare higher education institutions. The ranking selects the 1,000 best educational institutions from a global point of view, among the 20,000 higher education centers that exist.

It is possibly the most famous and most recognized university analysis that values the quality of institutions in the generation of knowledge. The research community respects the results of these rankings because they are based on objective data and their classification is reproducible.

Source:
https://www.aragondigital.es/2019/08/15/la-uz-en-la-elite-de-las-500-mejores-universidades-del-mundo-segun-el-ranking-de-shanghai/

Read More

The Autonomous University of Barcelona, in the elite of the 300 best universities in the world

The Academic Ranking of World Universities (ARWU), known as Shanghai Ranking, which was made public on August 15, places the Autonomous University of Barcelona among the elite of the 300 best universities in the world and the first of the Spanish universities.

This indicator organizes up to 20,000 university centers worldwide,
based on transparent methodology and objective third-party data. ARWU is regarded as one of the three most influential and widely observed university rankings

The Autonomous University of Barcelona houses two of NANBIOSIS Units:

U1 Protein Production Platform (PPP), led by Toni Villaverde, Neus Ferrer and Paolo Saccardo, offer an “tailored” service for the design, production and purification of recombinant proteins using both prokaryotic and eukaryotic expression systems

U25 NMR: Biomedical Applications I, led by Carles Arús and Ana Paula Candiota, with a recognized research track record in the use of NMR as a tool for biomedical applications, and more especifically to identify biomarkers of different pathologies, the main objective of this unit is the acquisition, processing and/or interpretation of Nuclear Magnetic Resonance data



Read More

NANBIOSIS U2 expands its capabilities with a two new equpipments

The U2 of NANBIOSIS, Custom Antibody Service (CAbS) has expanded its capabilities with two new equipment items an Automated microdispensing system for microarray technology and a Nitrogen Tank Cryomemo.

The Automated microdispensing system for microarray technology is a sciFLEXARRAYER S3 is an automated piezo driven, non-contact dispensing system of ultra-low volumes specifically designed as an economical entry unit for academia and R&D labs. It consists of XYZ-stages with spindle drives, a piezo dispensing unit and precision equipment for liquid handling. The system handles volumes from 50 picoliters up to several microliters. The S3 is suitable for the production  DNA, protein, glycan microarrays and biosensor loading, MALDI-MS sample preparation and target loading, accurate dilution series and addition of tiny aliquots, printing chemical libraries, spotting onto disc format (round targets) and customized targets, assay development and screening assays, microarray-based analysis

The Nitrogen Tank Cryomemo(Cryopal): the Cryomemo device is an electronic kit consisting of level and temperature indicators, and acontrol and configuration interface. It is used to control and regulate the nitrogen levels and temperature of cryogenic tanks (GT 40, Asperge, Espace and RCB) using sernsorand solenoid valves that control nitrogen intake andblowdown. It is also used to manage alarms.

This equipment have been confinanced by the European Regional Development Fund (ERDF) through the Plurirregional Operational Program of Spain (POPE)2014-2020

European Regional Development Fund
Read More

The Immunomodulatory Signature of Extracellular Vesicles From Cardiosphere-Derived Cells: A Proteomic and miRNA Profiling

Researcher of CCMIJU published an article in the scientific journal FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY with the participation of NANBIOSIS Unit 14 of Cell Stem Cell
Therapy
where culture and in vitro studies were
performed,

The researchers have shown that the regenerative potential and immunomodulatory capacity of cardiosphere-derived cells (CDCs) is mediated by paracrine mechanisms. In this process, extracellular vesicles derived from CDCs (EV-CDCs) are key mediators of their therapeutic effect. Considering the future applicability of these vesicles in human diseases, an accurate preclinical-to-clinical translation is needed, as well as an exhaustive molecular characterization of animal-derived therapeutic products. Based on that, the main goal of this study was to perform a comprehensive characterization of proteins and miRNAs in extracellular vesicles from porcine CDCs as a clinically relevant animal model.

The analysis was performed by identification and quantification of proteins and miRNA expression profiles. The results revealed the presence of clusters of immune-related and cardiac-related molecular biomarkers in EV-CDCs. Additionally, considering that priming stem cells with inflammatory stimuli may increase the therapeutic potential of released vesicles, here we studied the dynamic changes that occur in the extracellular vesicles from IFN gamma-primed CDCs. These analyses detected statistically significant changes in several miRNAs and proteins. Notably, the increase in interleukin 6 (IL6) protein, as well as the increase in mir-125b (that targets IL6 receptor) was especially relevant. These results suggest a potential involvement of EV-CDCs in the regulation of the IL6/IL6R axis, with implications in inflammatory-mediated diseases.

Article of reference: DOI: 10.3389/fcell.2020.00321

Read More