+34 679 490 537info@nanbiosis.com

News U20

News U20

Targeting antitumoral proteins to breast cancer by local administration of functional inclusion bodies

Three units of NANBIOSIS have collaborated in obtaining the research results published in the article “Targeting Antitumoral Proteins to Breast Cancer by Local Administration of Functional Inclusion Bodies” published by Advanced Science

Protein production and DLS have been partially performed by the Unit 1 of ICTS NANBIOSIS Protein Production Platform (PPP) and the Unit 6 NANBIOBIS Biomaterial Processing and Nanostructuring Unit. Biodistribution and immunohistochemistry assays were performed at NANBIOSIS U20 In Vivo Experimental Platform/FVPR

Two structurally and functionally unrelated proteins, namely Omomyc and p31, are engineered as CD44‐targeted inclusion bodies produced in recombinant bacteria. In this unusual particulate form, both types of protein materials selectively penetrate and kill CD44+ tumor cells in culture, and upon local administration, promote destruction of tumoral tissue in orthotropic mouse models of human breast cancer. These findings support the concept of bacterial inclusion bodies as versatile protein materials suitable for application in chronic diseases that, like cancer, can benefit from a local slow release of therapeutic proteins.

Read More

AKT2 as a promising target for future anti-cancer therapies

The researchers of NANBIOSIS U20, led by Ibane Abásolo and Simó Schwartz have published a new article on the scientific magazine Cancerswith the title Pivotal Role of AKT2 during Dynamic Phenotypic Change of Breast Cancer Stem Cells

All the in vivo studies were performed by NANBIOSIS U20 In Vivo Experimental Platform.

Therapeutic resistance seen in aggressive forms of breast cancer remains challenging for current treatments. More than half of the patients suffer from a disease relapse, most of them with distant metastases. Cancer maintenance, resistance to therapy, and metastatic disease seem to be sustained by the presence of cancer stem cells (CSC) within a tumor. The difficulty in targeting this subpopulation derives from their dynamic interconversion process, where CSC can differentiate to non-CSC, which in turn de-differentiate into cells with CSC properties. Using fluorescent CSC models driven by the expression of ALDH1A 1(aldehyde dehydrogenase 1A1), we confirmed this dynamic phenotypic change in MDA-MB-231 breast cancer cells and to identify Serine/Threonine Kinase 2 (AKT2) as an important player in the process. To confirm the central role of AKT2, we silenced AKT2 expression via small interfering RNA and using a chemical inhibitor (CCT128930), in both CSC and non-CSC from different cancer cell lines. Our results revealed that AKT2 inhibition effectively prevents non-CSC reversion through mesenchymal to epithelial transition, reducing invasion and colony formation ability of both, non-CSC and CSC. Further, AKT2 inhibition reduced CSC survival in low attachment conditions. Interestingly, in orthotopic tumor mouse models, high expression levels of AKT2 were detected in circulating tumor cells (CTC). These findings suggest AKT2 as a promising target for future anti-cancer therapies at three important levels: (i) Epithelial-to-mesenchymal transition (EMT) reversion and maintenance of CSC subpopulation in primary tumors, (ii) reduction of CTC and the likelihood of metastatic spread, and (iii) prevention of tumor recurrence through inhibition of CSC tumorigenic and metastatic potentia

Read More

NANBIOSIS U20 at the Nanomed Europe Conference, NME19.

Last week took place in Braga, Portugal, the Nanomed Europe Conference, NME19, a new and unique conference  born from the merge of the 14th annual event of the ETPN & the European scientific conference ENM (after London 2017 & Grenoble 2015), bringing together scientists, technology providers, entrepreneurs, industry and clinicians, all of them developing great medical applications of Nanotechnologies and emerging MedTech. The event is been co-organized this year by the ETPN and INL.

Simó Schwartz, Scientific Director of NANBIOSIS U20, was one of the selected speakers and gave a lecture about “Preclinical development of magnetic nanoparticles for the treatment of pancreatic cancer”

Two posters mentioning the research carried out at NANBIOSIS Unit 20 were also presented. (See the picture)

It was also a ood opportunity to explain the advances in the two H2020 projects where NANBIOSIS U20 participates (“Nocanther” and “Smart4Fabry”), and also an internal project, “Meridian”, on the use of exosomes (with own patent and financed by the FIS).

In Nocanther Project, the U20 participates providing the animal models and the imaging techniques (X-ray CT images) for the biodistribution and efficacy assays of iron oxide nanoparticles. These assays are essential for preparing the dossier for the clinical application of these nanoparticles. Indeed, patient recruitment for clinical studies on Nocanther project will start in 2020.

In Smart4Fabry, the U20 works completing the efficacy assays of different nanoGLA formulations. Again, these efficacy assays will be a necessary step before starting preclinical regulatory assays.

In the MERIAN project, U20 provides the in vivo proof-of-concept and biodistribution assays that support the use of protein loaded exosomes as a feasible product for treating lysosomal storage disorders.

Read More

Preclinical molecular imaging and its application to biomedical research

During the days 22-24 of May is taking place in Madrid the 3rd Workshop of introduction to the preclinical molecular image and its application to biomedical research,. The wokshop has been organized by the Health Research Institute of the Gregorio Marañón Hospital, the Complutense University of Madrid and the Madrilenian Network of nanomedicine in molecular imaging (RENIM-CM).

The program counts with theoretical sessions of introduction to the physical foundations of each one of the modalities of image and its applications to preclinical biomedical research, as well as practical demonstrations of said image techniques.

Ibane Abásolo, Scientific Coordinator of Unit 20 of NANBIOSIS In Vivo Experimental Platform, introduced the in vivo optical imaging applications, explaining the research carried out at her research group at Vall d’Ebron Hospital Research Institute (VHIR) and NANBIOSIS U20 created by CIBER-BBN and VHIR, applied to projects as the H2020 Smart4Fabry and NoCanTher

NANBIOSIS U20 In vivo Experimental Platform has three different sections, a Molecular Imaging section for in vivoex vivo and in vitro imaging studies (fluorescence, bioluminescence and X-rays), a preclinical animal model section and a preclinical histology section.

Read More

NANBIOSIS Scientific Women in the International Day of Women and Girls in Science

Today February 11 is the International Day of Women and Girls in Science, a day to raise awareness of the gender gap in science and technology.

According to the United Nations, while yet women and girls continue to be excluded from participating fully in science, science and gender equality are vital to achieve the internationally agreed development goals, including the 2030 Agenda for Sustainable Development. Thus, in recent years, the international community has made a great effort to inspire and promote the participation of women and girls in science.

NANBIOSIS wants to acknowledge  the efforts made by scientific women who struggle every day to contribute their bit to Science and highlight their essential role in nowadays research. Especially we want to recognize the work of scientists women involved in our units, whatever is the nature of their contribution: technical, scientific development, management, coordination, direction, etc; just to mention some examples:
Neus Ferrer in the Scientific Direction of Unit 1 Protein Production Platform (PPP)
Pilar Marco and Nuria Pascual in the Management and Scientific Coordination of U2 Custom Antibody Service (CAbS) 
Miriam Royo in the Scientific Direction of U3 Synthesis of Peptides Unit
Laura Lechuga and M.Carmen Estevez in the Direction and Scientific Coordination of U4 Biodeposition and Biodetection Unit
Nora Ventosa and Nathaly Segovia in the Scientific Direction and Technical Coordination of U6 Biomaterial Processing and Nanostructuring Unit
Isabel Oliveira and Teresa Galán in the Coordination of U7 Nanotecnology Unit
Rosa Villa and Gemma Gabriel in the Management and Scientific Coordination of U8 Micro – Nano Technology Unit
Gema Martínez in the Scientific Coordination of U9 Synthesis of Nanoparticles Unit
Fany Peña in the Scientific Coordination of U13 Tissue & Scaffold Characterization Unit
Mª Luisa González Martín in the of Direction and Scientific Coordination of U16 Tissue & Scaffold Characterization Unit
Gemma Pascual and Isabel Trabado in the Coordination of the U17 Confocal Microscopy Service
Mª Virtudes Céspedes in the Scientific Coordination of U18 Nanotoxicology Unit
Beatriz Moreno in the Scientific Direction of Unit 19 Clinical tests lab
Ibane Abásolo in the Scientific Coordination of Unit 20 In Vivo Experimental Platformt
Verónica Crisóstomo in the Scientific Direction of Unit 24 Medical Imaging 

Ana Paula Candiota in the Scientific Coordination of Unit 25 Biomedical Applications I 
Maria Luisa García in the Scientific Direction of U28 NanoImaging Unit from Bionand, recently incorporated to NANBIOSIS

Read More

NANBIOSIS Against Cancer

The World Health Organization, the International Cancer Research Center (IARC) and the International Union Against Cancer (UICC) celebrate February 4 of each year as World Cancer Day

Every year, 14 million new cases of cancer are diagnosed worldwide and the disease causes 8.2 million deaths.

Thanks to scientific research, great advances have been made in the fight against cancer. Through surgery, chemotherapy or radio therapy and, in the last 20 years, through immunotherapy, hormonal treatment or cell therapies, tools have been obtained to improve early diagnosis and treatments, increasing cancer survival by 20%.

The only way to understand cancer and, someday, eradicate it or eliminate the suffering and death due to this disease, is RESEARCH

NANBIOSIS as an ICTS (Singular Scientific and Technical Infrastructures) for biomedical research plays a very important role in the fight against cancer. Some examples are bellow:

Thanks to a coordinated action between units U1 of Protein Production Platform (PPP), U18 of Nanotoxicology and U29 of Nucleic Acid Synthesis, NANBIOSIS is developing nanopharmaceuticals with a high degree of efficacy for the treatment of metastases in colon cancer, by using of proteins with high specificity of binding to metastatic cells and a high degree of permanence in the blood flow, loaded with anti-cancer drugs that are selectively released inside the tumor cells that are going to form the metastases. Through the public financing of a NEOTEC project and a RETOS-COLABORACION and the company NANOLIGENT SL, the first antimetastatic drug on the market will be developed.

The Protein Production Platform-PPP collaborates with research projects whose objective is the development of new cancer therapies based on recombinant modular proteins with the ability to self-assemble. These multimeric complexes have shown, in animal models, a high stability in serum and an improved biodistribution compared to that observed with drugs for clinical use. These principles have been valued in different types of cancer, including colorectal cancer and breast cancer. The modular design of these constructions allows the incorporation or substitution of direct peptides and therefore they are presented as a transversal tool for more effective treatments against cancer. In addition, the PPP has served the Vall d’Hebron Institute of Oncology (VHIO) of Barcelona, the Josep Vilanueva group (CIBERONC) in the field of biomarker study and new targets associated with triple negative breast cancer (TNBC).

Unit 6 of NANBIOSIS Biomaterial Processing and Nanostructuring Unit is working on a project in collaboration with VHIR, financed by the Spanish Goverment and CIBER-BBN, for the development of a new nanomedicine for the treatment of high-risk neuroblastoma, one of the most frequent childhood cancers.

Unit 6 is also working on the project Artificial Lymph Nodes for Cancer ImmunoTherapy (ALYCIA) A project born of a initiative of CIBER-BBN/ CIBERONC to enhance scientific interdisciplinary collaborations between research groups working on oncology and nanomedicine. Researchers of unit 6 will develop Artificial Lymph Nodes (ALN) based on dynamic 3D scaffolds able to promote efficient ex vivo lymphatic cell expansion of relevant phenotypes. Such ALN represent a new approach to lymphocyte expansion, which not only includes artificial Antigen Presenting Cells in suspension like the state-of-the-art expansion techniques, but also mimics the function of the LN ex vivo.

One of the singular capabilities of the U25 of NANBIOSIS NMR: Biomedical Applications I is the acquisition of high quality, high resolution preclinical magnetic resonance imaging/spectroscopy/spectroscopic imaging data. This allows performing leading-edge studies in preclinical cancer models such as noninvasive therapy response follow-up in murine brain tumours, revealing new response biomarkers with translational potential for brain cancer patients.

NANBIOSIS U4 Biodeposition and Biodetection Unit  is currently developing the national project PREDICT Point-of-care Nanoplasmonic Platforms for Novel High-Value Diagnostics and Therapy Follow-Up , which works in the early detection of lung cancer. PREDICT project will use the Unit 4 of Nanbiosis for the multiplexed biofunctionalization of the biosensor chips and their methodology optimisation.

Finally, Unit 20 of NANBIOSIS In Vivo Experimental Platform at VHIR, is the most implicated of the CIBER units on projects in the field of cancer, just to name some of them: H2020-NoCanTher: magnetic nanoparticles against pancreatic cancer through the use of hyperthermia combined with conventional treatment. H2020-Target-4-Cancer: nanotherapy based on polymeric micelles directed against specific receptors of tumor stem cells in colorectal cancer. H2020-DiamStar: nanodiamonds directed against leukemia for the potentiation of chemotherapy. FET-OPEN EvoNano: in silico and tumor-tumor models for the prediction of PK / PD and tumor efficacy of antitumor nanomedicines against tumor stem cells. FIS-ISCIII: polymeric micelles for siRNA and combined therapy against breast cancer tumor stem cells. CarboXigel: hydrogels for the sustained release of chemotherapeutic drugs against the metastatic spread of ovarian cancer. MelanoMir: nanomedicine applied to skin cancer, melanoma, beside other projects promoted by CIBER-BBN.

Read More

Lysosomal Rare Disorders: Focus on Fabry Disease

Last November 19, Vall d’Hebron held a seminar  on Lysosomal Rare Disorders: Focus on Fabry Disease as  part of the Rare Diseases Program at the Vall d’Hebron Campus, in collaboration with the European Commission, the Center for Biomedical Research Network on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) and the CIBBIM-Nanomedicine at Vall d Hebron Research Institute (VHIR) through the Smart-4-Fabry projec

In the  second plenary session, moderated by Nora Ventosa and Simó Schwartz, Scientific Directors of NANBIOSIS units 6 and 20 and devoted to New therapeutic strategies for lysosomal disorders, the speakers presented their findings regarding biomarkers, genetic variants and treatment protocols. Ibane Abasolo, Scientific Coordinator of NANBIOSIS Unit 20 gave a talk on Nanomedicine in lysosomal disorders. Project Smart4Fabry .

The Smart4Fabry project, coordinated by CIBER-BBN and with the participation of NANBIOSIS units U3 Synthesis of Peptides Unit, U6 Biomaterial Processing and Nanostructuring Unit and U20 Functional Validation & Preclinical Research (FVPR), was described in the course of this specific day on lysosomal diseases and Fabry’s disease.

Read More

Update and improvement of unit 20 of NANBIOSIS

NANBIOSIS, U20. In Vivo Experimental Platform, led by Dr. Simó Schwartz and Dr. Ibane Ibasolo, has been recently updated and improved as a result of its participation in the project FICTS1420-20, selected by the MICINN for co-financing by the FEDER Program in ICTS 2014-2020. 

These update and improvement include: DLS meassurement system, a fluorimeter and a waterbath for specific activity assays. The fine characterization of the size and size distribution of nanoparticles is essential for the right understanding of their in vivo behavior. The incorporation of this service to the U20 allows the determination of the drug/fluorophore loading/activity of the drug delivery systemistered in vivo, a good quality control of compounds and nanoparticles, as well as the study of their stability upon storage.

 

 

European Regional Development Fund

Read More

Biodistribution, safety and efficacy studies of pharmacological release nanotechnological systems

Ibane Abásolo, Scientific Coordinator of NANBIOSIS U20, explains in this video the studies of biodistribution, safety and efficacy of nanotechnological systems of pharmacological liberation that are developed in this unit and , overall, their expertise and differentiation in the sector in the evaluation of nanosystems (with certification ISO 901-2015)

Read More

NANOMEDICINE APPLICATIONS IN DRUG DELIVERY AND TARGETING: NANBIOSIS – NANOMED Industrial Forum

Yesterday took place in Barcelona, at Barcelona School of Management, Universitat Pompeu Fabra, a meeting of resarch groups and units of NANBIOSIS and CIBER-BBN and companies in the third B2B Forum organized by NANBIOSIS, in this case together with NANOMED SPAIN.

Thirteen companies and twelve groups from CIBER-BBN and CCMIJU (ten of them coordinating NANBIOSIS units) got together to explain, through short presentations of ten minutes, those lines of their work aimed at finding synergies and potential collaborations in the area of Nanomedicine apllications in drug delivery and targeting. There was also a talk by a  representative of CDTI (Spanish National Center for Industrial and Technological Development) to explain the financing opportunities for the companies as well as a presentation by the NANBIOSIS Coordinator, Jesús Izco, to show the new Cutting Edge Biomedical Solutions offered by the ICTS-NANBIOSIS

After lunch, the groups and companies had the opportunity to discuss in more detail, during bilateral interviews coordinated by NANBIOSIS a, those aspects that had attracted their attention, as well as, in some cases, to draw potential collaborations. The event was successfully developed with 45 attendees and more than 50 individual B2B mettings.

 

Read More