+34 679 490 537info@nanbiosis.com

News U3

News U3

Antimicrobial peptides are a promising kind of molecules to fight multi-drug resistant bacteria

The project titled “Breaking the boundaries of resistance to antimicrobials; searching for new antimicrobials against multiresistant bacteria: work on polycytonic peptides and lipid nanoparticles (BARNAPA)” in which participates Fernando Albericio, Scientific Director of NANBIOSIS unit 3 Synthesis of Peptides Unit, has been selected by La Marató TV3 and finnaced with 383.276,25 €.

According to Fernando Albericio, the project arises from the need of effective and safer antibiotics to fight resistant and multi-drug resistant bacteria. In this sens, the proyect developed in collaboration with Miquel Vinyas of the UB and with the Stefania Stefani group of the Universita de Catania  looks at antimicrobial peptides as a promising kind of molecules to achieve this goal.

Fernando explains the experimental session of the project: “The synthesis of molecules in the chemical laboratory may yield new cationic peptides analogs optimizing selectivity (increasing activity, reducing toxicity) to develop them as candidates for preclinical development. Natural molecules, such as teixobactin and colistin, may serve as scaffold for unlimited new antimicrobial peptides. Mechanisms of action and spectrum of activity should be elucidated first by means of biophysical studies (electron microscopy, flow cytometry, model membranes, electrophysiology). In addition, preparation of lipid nanoparticles will be carried out to explore new pharmaceutical formulations maintaining antimicrobial activity and reducing unwanted side effects. Testing studied molecules in front of clinical multidrug resistant isolates and biofilms produced by these bacteria will be also accomplished. The eventual synergism between the peptides and conventional antimicrobials has to be explored since previous results are promising. We hopefully expect this project to yield a few candidates and propose new delivery
formulations to start exploratory in vitro and in vivo tests (which should include acute toxicity determination, pharmacokinetics, and development of a model of respiratory infection in mice) to finally transfer it to a pharmaceutical company for further clinical assay and use”.

 

Read More

Two units of NANBIOSIS in the project selected by La Marató TV3 to fight against bacterial infections

La Marató TV3 in its call for biomedical projects in infectious diseases has selected the project “Uses of molecular analysis of Quorum Sensing with the diagnosis of bacterial infections” of the Nb4D group, led by Mª Pilar Marco, Scientific Director of unit 2 of NANBIOSIS and in which Miriam Royo also participates Scientific Coordinator of unit 3 of NANBIOSIS, both in the IQAC-CSIC of Barcelona

The project of the Nanobiotechnology for Diagnosis (Nb4D) group of the CSIC and the CIBER-BBN has been selected among more than 200 candidates as a project of scientific excellence to be funded in the call for biomedical projects of the Fundació la Marató de TV3 and Catalonia Radio. The project, led in the Nb4D group by Dr. M.-Pilar Marco, Scientific Director of unit 2 of NANBIOSIS and Dr. Lluïsa Vilaplana, will be carried out in collaboration with Dr. M.-Teresa Martín (Hospital Vall d’Hebrón) and aims to study the potential of various molecules of Quorum Sensing as diagnostic tools for bacterial infections. The project, financed with € 227,684.84, also has the collaboration of Dr. Miriam Royo, Scientific Coordinator of Unit 3 of NANBIOSIS, of the Multivalent Systems for Nanomedicine group, also belonging to the CSIC and the CIBER-BBN.

The funds raised in the 2017 edition of the Marató de TV3 and Cataluña Radio will finance 36 biomedical research projects of excellence in infectious diseases to promote the creation of new tools for prevention and diagnosis, as well as more efficient treatments with the aim of earning more and more quality of life for patients.

Link to the news:
http://www.ccma.cat/324/la-marato-impulsa-36-projectes-de-recerca-biomedica-en-malalties-infeccioses/noticia/2884103/

Read More

Lysosomal Rare Disorders: Focus on Fabry Disease

Last November 19, Vall d’Hebron held a seminar  on Lysosomal Rare Disorders: Focus on Fabry Disease as  part of the Rare Diseases Program at the Vall d’Hebron Campus, in collaboration with the European Commission, the Center for Biomedical Research Network on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) and the CIBBIM-Nanomedicine at Vall d Hebron Research Institute (VHIR) through the Smart-4-Fabry projec

In the  second plenary session, moderated by Nora Ventosa and Simó Schwartz, Scientific Directors of NANBIOSIS units 6 and 20 and devoted to New therapeutic strategies for lysosomal disorders, the speakers presented their findings regarding biomarkers, genetic variants and treatment protocols. Ibane Abasolo, Scientific Coordinator of NANBIOSIS Unit 20 gave a talk on Nanomedicine in lysosomal disorders. Project Smart4Fabry .

The Smart4Fabry project, coordinated by CIBER-BBN and with the participation of NANBIOSIS units U3 Synthesis of Peptides Unit, U6 Biomaterial Processing and Nanostructuring Unit and U20 Functional Validation & Preclinical Research (FVPR), was described in the course of this specific day on lysosomal diseases and Fabry’s disease.

Read More

Peptides, targeting units and drug conjugates

Miriam Royo, Scientific Coordinator of Unit 3 of NANBIOSIS explains in this video the expertise of the unit in the preparation of difficult peptides (Cyclid and polycyclic peptides, stapled peptides and dificult peptides, depsipetides, natural products and libraries, peptidomimetic libraries, peptides as antigens or adjuvants, tarjeted drug conjugates, etc… as well as therapeutic agen-PEG-targeting unit conjugates

Read More

Stimuli-Responsive Functionalization Strategies to Spatially and Temporally Control Surface Properties: Michael vs Diels–Alder Type Additions

NANBIOSIS Unit 6 Biomaterial Processing and Nanostructuring and Unit 3 Synthesis of Peptides collaborate in a research whose results are published by The Journal of Physical Chemistry B

Stimuli-Responsive Functionalization Strategies to Spatially and Temporally Control Surface Properties: Michael vs Diels–Alder Type Additions

Adriana R. KyvikCarlos Luque-CorrederaDaniel PulidoMiriam RoyoJaume VecianaJudith Guasch, and Imma Ratera
The Journal of Physical Chemistry B 2018 122 (16), 4481-4490

DOI: 10.1021/acs.jpcb.8b01652

Stimuli-responsive self-assembled monolayers (SAMs) are used to confer switchable physical, chemical, or biological properties to surfaces through the application of external stimuli. To obtain spatially and temporally tunable surfaces, we present microcontact printed SAMs of a hydroquinone molecule that are used as a dynamic interface to immobilize different functional molecules either via Diels–Alder or Michael thiol addition reactions upon the application of a low potential. In spite of the use of such reactions and the potential applicability of the resulting surfaces in different fields ranging from sensing to biomedicine through data storage or cleanup, a direct comparison of the two functionalization strategies on a surface has not yet been performed. Although the Michael thiol addition requires molecules that are commercial or easy to synthesize in comparison with the cyclopentadiene derivatives needed for the Diels–Alder reaction, the latter reaction produces more homogeneous coverages under similar experimental conditions.

 

Read More

NANOMEDICINE APPLICATIONS IN DRUG DELIVERY AND TARGETING: NANBIOSIS – NANOMED Industrial Forum

Yesterday took place in Barcelona, at Barcelona School of Management, Universitat Pompeu Fabra, a meeting of resarch groups and units of NANBIOSIS and CIBER-BBN and companies in the third B2B Forum organized by NANBIOSIS, in this case together with NANOMED SPAIN.

Thirteen companies and twelve groups from CIBER-BBN and CCMIJU (ten of them coordinating NANBIOSIS units) got together to explain, through short presentations of ten minutes, those lines of their work aimed at finding synergies and potential collaborations in the area of Nanomedicine apllications in drug delivery and targeting. There was also a talk by a  representative of CDTI (Spanish National Center for Industrial and Technological Development) to explain the financing opportunities for the companies as well as a presentation by the NANBIOSIS Coordinator, Jesús Izco, to show the new Cutting Edge Biomedical Solutions offered by the ICTS-NANBIOSIS

After lunch, the groups and companies had the opportunity to discuss in more detail, during bilateral interviews coordinated by NANBIOSIS a, those aspects that had attracted their attention, as well as, in some cases, to draw potential collaborations. The event was successfully developed with 45 attendees and more than 50 individual B2B mettings.

 

Read More

Agreements signed with MINECO for the allocation of FEDER funds for NANBIOSIS ICTS

In the framework of the FEDER Program in ICTS 2014-2020, several projects related to the ICTS NANBIOSIS have been selected by the MINECO for co-financing with FEDER funds of the European Regional Development Funds program.

An agreement has been signed between MINECO and CIBER (partner of NANBIOSIS for the co-financing of the Project: “Purchase, installation and set-up of production and characterization equipment to complement the Units: U3-Synthesis of Peptides Unit, U18-Nanotoxicology and U20- In Vivo Experimental Platform”. The total budget of the project amounts to € 307,566.16, with 50% financing with FEDER Funds.

Also CSIC (The State Agency Superior Council of Scientific Investigations), institution that houses some of the NANBIOSIS units,  as distributed ICTS,  has signed an agreement with MINECO for the co-financing of the Project: “Purchase and installation and set-up of equipment and production and characterization laboratories to complement the units U2-Production of antibodies, U4-Biodeposition and biosensing, U6-Processing of biomaterials and U8-Micro, nanotechnology. The total budget of the project amounts to € 312.800,00 €, with 50% financing with FEDER Funds.

These two projects aim to increase the quantity and quality of the services offered by th implied units, with the objetive of positioning them as national and international benchmark in their respective fields of application. As a consequence, an increase in the performance (number of services and number of users) of each unit is expected, especially from companies (pharmaceutical and small biotechnology).

CSIC and CIBER are processing the necessary contracting procedures for the execution of these projects.

Read More

Fabry disease awareness month, April

The Fabry International Network (FIN) association established the month of April as the “month of Fabry” to raise awareness and educate about this disease, a rare, progressive and with multi-organ involvement pathology.

Fabry Disease is one of several dozen Lysosomal Storage Disorders that interfere with the body’s ability to break down specific fatty substances. It is a rare disease and because the rate of occurrence is less than 1 in 200,000, it is considered as one of the many “Orphan” diseases. It is more common in women, but it occurs with greater severity in men.

Fabry disease is a metabolic disease that is produced by a deficiency of the ysosomal enzyme Alpha galactosidase. It is transmitted on the X chromosome. Fabry affected patients are missing alpha-galactosidase A (alpha-gal A) which results in sugars and fatty acids (Gb3) accumulating in the cells throughout the body and impairs the function of several major organs including the kidneys and heart. In 2001, enzyme replacement therapy appeared when the alpha-galactosidase protein (alpha- and beta-agalsidase) was synthesized in the laboratory using genetic engineering techniques. This treatment is injected into patients every 15 days to replenish the deficit levels of this enzyme and stop the progression of the disease.

CIBER-BBN, partner of NANBIOSIS, leads the European project Smart4fabry funded by the Horizon 2020 program, which will be developed through a consortium formed by 14 partners from 5 different countries. The CIBER-BBN coordinates the project through the participation of four of its groups that coordinate four units of NANBIOSIS (U1.Protein Production Platform (PPP), U3. Synthesis of Peptides Unit, U6. Biomaterial Processing and Nanostructuring Unit and U20. In Vivo Experimental Platform.) In addition, the consortium is formed by the University of Aarhus (Denmark), Technion Israel Institute of Technology (Israel), Joanneum Research (Austria), Biopraxis Research AIE (Spain), the spin off Nanomol Technologies SL (Spain) ), BioNanoNet (Austria), Drug Development and Regulation SL (Spain), the Covance Laboratories LTD group (UK), and Leanbio SL (Spain) Smart-4-Fabry has been conceived and developed to obtain a new nanoformulation of GLA, that will improve the efficacy and toleration of the treatment with non-formulated GLA. The final benefit will be seen as a considerable reduction on the Fabry disease treatment cost and a substantial improvement in the life-quality of Fabry disease patients.

Fabry International Network, FIN was established in 2005, as a non-for-profit organization registered in The Netherlands. The primary aim of the project is to facilitate collaboration between patient organizations around the world to support those affected by Fabry disease

FIN is connected to over 45 countries around the world. Membership is free and open to any National Patient Organization in which Fabry patients are represented. The National Fabry Disease Foundation – USA, for April 2018 Fabry Disease Awareness Month, have been providing an educational or information post on their Facebook page, every day of the month in April. The NFDF also distributed their My Health Handbook kit  and, so far, distributed about 700 kits to individuals with Fabry disease. Fabry Australia have a new website and they are also running a new social media campaign. Fabry Support & Informatie Groep Nederland, FSIGN, since 2005  has organized every first Saturday of April (in the Fabry Awareness Month April) to be the Fabry women’s day. Japan Fabry Disease Patients and Family Association, in awareness month JFA held an open seminar at Fukuoka University Medical hall with lectures on three major topics: Newborn Mass Screening, Current Treatments and Employment and Clinical Genomics. In Spain the Fabry patient organization are the Spanish Fabry MPS Association

 

The Fabry International Network will cellebrate the 6th Fabry Expert Meeting on
8th – 10th June 2018 at the Vilnius Grand Resort, Ežeraičių g. 2, Ežeraičių km., Avižienių sen., Vilniaus raj., LT-14200, Lietuva.

DRAFT Full Program

 

Read More

“Smart-4-Fabry”: European project focused on the Fabry rare disease, participated by 4 units of NANBIOSIS

  • Smart-4-Fabry is a project coordinated by CIBER-BBN, funded by the European Commission within the Horizon 2020 Research and Innovation program with € 5.8 M for 4 years, which aims to develop a new nanomedicine for the treatment of the Fabry rare disease.

 

  • Fabry disease is a rare disease belonging to the group of lysosomal storage disorders, with a global incidence of 1:5,000 – 1:10,000, representing a priority health problem at European level.

 

The European project “Smart-4-Fabry”, is coordinated by CIBER-BBN, specifically by NANOMOL group at ICMAB-CSIC (Dr. Nora Ventosa) and the Biomaterial Processing and Nanostructuring Unit (U6) of  ICTS “NANBIOSIS”, and it also counts with the participation of NANBIOSIS Units U1 Protein Production Platform (PPP), U3 Synthesis of Peptides Unit, and U20 In vivo Experimental Platform.

Fabry disease is an inherited genetic disorder of the lysosomal storage group, which affects many organs and parts of the body, as it is caused by the accumulation of a lipid in the lysosomes of the cells, altering their functions and leading to cell death. This accumulation is due to the lack of an enzyme, α-Galactosidase A (GLA). The symptoms are many: limb pains, stains on the skin, problems with sweating, blurred frontal vision, gastrointestinal problems, loss of hearing, etc. In the long term it can cause renal failure, and heart and central nervous system problems.

Patients can lead a normal life with the current treatment called “enzyme replacement therapy”, where GLA is administered intravenously to patients. However, this treatment exhibits several drawbacks, related to a high instability, high immunogenicity or low efficacy of this molecule crossing cell walls. The development of a new treatment for this disease, as well as for other rare diseases, has become a priority challenge within the European program H2020.

Smart-4-Fabry, acronym for “Smart functional GLA-nanoformulation for Fabry disease”, was born with the idea of ​​obtaining a new nanoformulation of GLA that will improve the efficacy and tolerance of the existing treatments. The project will advance from experimental proof of concept, to the preclinical regulatory phase. The ultimate goal is to reduce the treatment cost and to improve the quality of life of patients with Fabry disease.

Smart-4-Fabry, involves the participation of fourteen partners from five different countries from academia and industry. The consortium is formed by: Network of Biomedical Research Centers: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) with the NANOMOL group at the Institute of Materials Science of Barcelona (ICMAB-CSIC), the Drug Delivery and Targeting Group at the Vall d’Hebron Research Institute (GDLF-VHIR), the Peptide Synthesis Unit at the Barcelona Science Park (UQC-PCB), and the Biotechnology and Biomedicine Institute of the Autonomous University of Barcelona (IBB-UAB) (Spain); Aarhus University (Denmark); Technion Israel Institute of Technology (Israel); Joanneum Research (Austria); Biopraxis Research AIE (Spain); the spin off Nanomol Technologies SL (Spain); BioNanoNet (Austria), Drug Development and Regulation SL (Spain), the Covance Laboratories LTD (UK) group; and Leanbio SL (Spain).

For further information: http://smart4fabry.eu/

 

 

Read More

Microfluidic device that reproduces the blood-retinal barrier

The use of In vitro testing with living cells as an alternative to animal research has limitations like the difficulty to reproduce the interaction of cells. To overcome it, scientists are working on the development of systems that simulate and reproduce functions of tissues and organs in conditions very similar to reality. They are called organ-on-a-chip, which include microenvironments and microarchitectures that simulate the state of tissues and living organs.

Scientists of NANBIOSIS Unit 8 have published in an article, cover of the magazine “Lab on a Chip”, the “proof of concept” of a microfluidic device that reproduces the blood-retinal barrier, that is, a microchip that allows us to reproduce what happens ” in vivo ‘in the retina. This device can be an essential tool that revolutionizes experimentation ‘in vitro’.

José Yeste, researcher of the CIBER-BBN, explains that the micro device consists of several parallel compartments, in which different types of cells have been cultivated to emulate the structure of cellular layers of the retina. They are endothelial cells, that is, they form the internal part of the barrier, in contact with the blood capillaries, through which oxygen and nutrients reach the retina. In addition, it is also composed of neuronal cells (which form the neuroretina), and pigment epithelial cells, which constitute the outer layer. The compartments are interconnected in their lower part by a network of micro-grooves, so as to allow an intercellular communication through the exchange of signalling molecules between cells. Thus, cells can send their signals to others and interact, much like they would in a living organism. In addition, the micro device allows the endothelial cells to be subjected to the mechanical stimulus induced by the flow to emulate a more physiological microenvironment.

“Within the body, the endothelial cells that line the inside of blood vessels are subject to the mechanical stimulation of blood circulation. In cell cultures that do not reproduce this flow, the cells are as ‘lethargic’, and do not respond in the same way they would in real conditions, “explains Rosa Villa, Scientific Director of NANBIOSIS Unit 8 and leader of the group of Biomedical Applications of the Microelectronics Institute of Barcelona of the CSIC.

Scientists have evaluated the correct formation of the blood-retinal barrier by performing permeability, electrical resistance tests, as well as protein expression of tight junctions between cells. These tests were intended to verify that the barrier is well formed, that it has closed but maintains the natural permeability, sufficient to allow the passage of nutrients and oxygen, and that the cells are in contact and interact with each other.

This work has been developed in the ICTS NANBIOSIS, more specifically in Unit 8 of Micro-Nano Technology located in the IMB-CNM. It is also part of the results of the CIBER intramural project called Micro BRB: Microfluidic model of retinal neurovascular unit to identify new therapeutic targets in diabetic retinopathy (2016-2017) in wich also  participates Unit 3 of NANBIOSIS

Source: http://noticiasdelaciencia.com/not/27155/un-microchip-microfluidico-reproduce-la-barrera-de-la-retina-humana/

Article of reference:

A compartmentalized microfluidic chip with crisscross microgrooves and electrophysiological electrodes for modeling the blood–retinal barrier. Jose Yeste, Marta arcía-Ramírez, Xavi Illa, Anton Guimerà, Cristina Hernández, Rafael Simó and Rosa Villa. DOI: 10.1039/C7LC00795GLab Chip, 2018, 18, 95-105

Read More