+34 679 490 537info@nanbiosis.com

News U6

News U6

Targeting antitumoral proteins to breast cancer by local administration of functional inclusion bodies

Three units of NANBIOSIS have collaborated in obtaining the research results published in the article “Targeting Antitumoral Proteins to Breast Cancer by Local Administration of Functional Inclusion Bodies” published by Advanced Science

Protein production and DLS have been partially performed by the Unit 1 of ICTS NANBIOSIS Protein Production Platform (PPP) and the Unit 6 NANBIOBIS Biomaterial Processing and Nanostructuring Unit. Biodistribution and immunohistochemistry assays were performed at NANBIOSIS U20 In Vivo Experimental Platform/FVPR

Two structurally and functionally unrelated proteins, namely Omomyc and p31, are engineered as CD44‐targeted inclusion bodies produced in recombinant bacteria. In this unusual particulate form, both types of protein materials selectively penetrate and kill CD44+ tumor cells in culture, and upon local administration, promote destruction of tumoral tissue in orthotropic mouse models of human breast cancer. These findings support the concept of bacterial inclusion bodies as versatile protein materials suitable for application in chronic diseases that, like cancer, can benefit from a local slow release of therapeutic proteins.

Read More

New publication by scientists of NANBIOSIS Unit 6 aims to motivate scientific community to start a new research line for organic and bio-organic electronics focused on the device fabrication

Researchers of Nanomol Group, coordinator of NANBIOSIS U6 of CIBER-BBN and ICMAB-CSIC, led by Inma Ratera and Jaume Veciana have publish a new article titled “Reversible switching of the Au(111) work function by near infrared irradiation with a bistable SAM based on a radical donor–acceptor dyad“, at Journal of Materials Chemistry C.

Article:
https://pubs.rsc.org/en/content/articlelanding/2019/TC/C9TC00906J#!divAbstract

Read More

Nanomol group initiates contact with the AEMPS to bring a new treatment against venous leg ulcers to the clinic

Researchers of the Nanomol group, ICMAB-CSIC and CIBER-BBN members of the ICTS “NANBIOSIS”, specifically of the Biomaterial Processing and Nanostructuring unit (U6), together with the company Nanomol Technologies S.L. have begun a consultation process with the Spanish Association of Medicines and Health Products (AEMPS) to try and enter a new treatment in a clinical studies stage, to fight against venous ulcers in lower extremities. The study is carried out within the framework of the RIS3CAT NANONAFRES project.

Approximately, 80% of ulcers in lower extremities have associated pathologies of venous insufficiency and these wounds are usually recurrent. An open ulcer can take from weeks to years to close, increasing the risk of mortality and affecting the quality of life of patients who suffer from them, mostly elderly people. The solution proposed within the NANONAFRES project consists of a medicine for topical application based on the incorporation of a biomolecule, with skin regenerating activity, encapsulated in nanoparticles. This approach ensures the protection of the active substance, preventing its degradation, while allowing the controlled and direct release of the drug in the area of ​​the ulcer.

The NANONAFRES project, led by Nanomol Technologies SL, was born from the collaboration of the Nanomol group from ICMAB-CSIC with the companies Nanomol Technologies and BIOMED-LEITAT, the primary care centres EAP Osona Sur-Alt Congost SLP and the EAP Vallcarca-Sant Gervasi, public hospitals such as the Terrassa Health Consortium and the Maresme Health-Consortium Foundation and international research centres such as the Centro de Ingeniería Genética y Biotecnología de Cuba. This project, awarded with a RIS3CAT fund sponsored by the Generalitat of Catalonia, has a budget of 2.3 million euros and a duration of 3 and a half years.

This first consulting meeting with the AEMPS is a very important milestone in the process of developing any drug, in order to carry out clinical trials and transfer the system to the market, and thus bring the proposed treatment to the people who need it.

This approach will improve the effectiveness of current venous ulcers treatments, as well as the quality of life of patients, reducing the cost of medicines available today. In addition, the Nanomol group already has an internationally granted patent on this product, which demonstrates the novelty of this system and strengthens its position to reach the market through the partners present in this consortium and, in particular, through its spin-off Nanomol Technologies S.L.

Links of interest:

Article published on ICMAB’s site: http://icmab.es/nanomol-participa-al-projecte-nanonafres-de-la-comunitat-ris3cat-de-nous-dispositius-de-diagnostic-i-big-data-aplicades-a-la-salut

Article published on LEITAT’s site: https://projects.leitat.org/nanonafres/

Patent: “VESICLES COMPRISING EPIDERMAL GROWTH FACTOR AND COMPOSITIONS THEREOF” (WO2014019555)

Read More

Judit Tomsen: Best oral presentation at ESC 2019


Last June 18-22 at the 2019, ESC meeting, the European Students Colloid Conference, that took place in Varna, Bulgaria, Judit Tomsen,  PhD fellow at the Nanomol group from CIBER-BBN and ICMAB-CSIC, was awarded with the best oral presentation.

Judit Tomsen, who carries out her work under supervision of Nora Ventosa,  Scientific Director of NANBIOSIS U6 Biomaterial Processing and Nanostructuring Unit, presented her oral communication entitled “Design of peptide targeted nanovesicles for the α-galactosidase A enzyme delivery“. Her talk explained some of the smart4fabry european project results, a project coordinated by CIBER-BBN and Nora Ventosa in which participates NANBIOSIS Unit 6.

The European Colloids and Interfaces Society (ECIS) organizes biannually ESC meetings of advanced students at PhD and MSc level who are undertaking research in the area of colloid and interface science at a European University.

Read More

Mechanism of interaction of a material (pharmaceutical, food, construction, chemical, etc.) with moisture or with any organic vapor.

Next June 11, 2019, from 09:30h to 17:00h, will take place in Eureka Building – Parc de Recerca, UAB (Barcelona), a Scientific-Theoretical / Practical Workshop on: DYNAMIC SORPTION OF VAPORS (DVS – DYNAMIC VAPOR SORPTION) AND CHARACTERIZATION OF MATERIALS (iGC / SEA – INVERSE GAS CHROMATOGRAPHY / SURFACE ENERGY ANALYZER) FOR THE ANALYSIS OF THE SORTION OF WATER AND ORGANIC VAPORS, AND CHARACTERIZATION OF MATERIALS AND SURFACES.

The event is organized by IESMAT, S.A. in collaboration with Nanomol Technologies SL, the Institute of Materials Science of Barcelona (ICMAB-CSIC), Surface Measurement Systems (SMS) and the Center for Biomedical Research in Network (CIBER)/NANBIOSIS, includes theoretical presentation DVS (Dynamic Vapor Sorption) technologies and iGC-SEA (Inverse Gas Chromatography – Surface Energy Analyzer).

This workshop, addressed to researchers and/or technicians interested in knowing the mechanism of interaction of a material (pharmaceutical, food, construction, chemical, etc.) with moisture or with any organic vapor, and DVS users, includes: Presentation of equipment and instrumentation of Surface Measurement Systems (SMS) distributed by Specific Instrumentation of Materials (IESMAT). Presentation of users of dynamic vapor sorption equipment. Demonstration of hardware and software of the DVS Intrinsic equipment.

FREE REGISTRATION– until full capacity is reached. To formalize it, contact Ms. Estefanía Écija (estefania.ecija@iesmat.com; 91 650 8005), before June 6th, indicating name, company, telephone and e-mail.

Read More

Infertility: Exosomal microRNAs in seminal plasma as sensitive and specific biomarkers of the presence of testicular spermatozoa for azoospermia

NANBIOSIS ICTS coordination equipment has recently received from researchers of Human Molecular Genetics Group of Bellvitge Biomedical Research Institute (IDIBELL) a publication mentioning NANBIOSIS in the Acknowledgements for its participation in the results of its investigations. The article has been publish by the journal Human Reproduction of OXFORD UNIV PRESS  with Quartile 1/ Decile 1.

The study carried out by  Maria Barcelo, Ana Mata, Lluís Bassas, and Sara Larriba demonstrates the potential of several miRNAs contained in small extracellular vesicles (sEVs) of seminal fluid as sensitive and specific biomarkers for selecting those azoospermic individuals with real chances of obtaining spermatozoa from the testicular biopsy. The nanoparticle tracking analysis was performed by the ICTS NANBIOSIS  U6 Biomaterial Processing and Nanostructuring Unit.

Article of reference:

Maria Barceló, Ana Mata, Lluís Bassas and Sara Larriba, Exosomal microRNAs in seminal plasma are markers of the origin of azoospermia and can predict the presence of sperm in testicular tissue Human Reproduction, pp. 1–12, 2018doi:10.1093/humrep/dey072

Read More

NANOMOL group, coordinator of NANBIOSIS Unit 6 collaborates with the VHIR in the developement of a new nanomedicine for the treatment of a childhood cancer

Within the MOTHER project (Molecule-based materials and supramolecular organizations for therapy, diagnosis and tissue engineering), the NANOMOL group from ICMAB collaborates with the Vall d’Hebron Institute of Research (VHIR), on the developement of a new nanomedicine for the treatment of high risk neuroblastoma, one of the most typical childhood cancers. Now, researchers from VHIR have identified new microRNAs that reduce the progression of this type of cancer.

The participation of NANOMOL group and NANBIOSIS unit 6 Biomaterial Processing and Nanostructuring Unit, as experts in nanoparticles and nanovesciles for nanomedicine, is on the synthesis of the adequate nanocapsules to protect, stabilize and direct this microRNAs molecules to the cancer tumours. The near future goal is to be able to administer the identified microRNAs for the treatment of high-risk neuroblastoma.

For further information

Read More

NANBIOSIS Scientific Women in the International Day of Women and Girls in Science

Today February 11 is the International Day of Women and Girls in Science, a day to raise awareness of the gender gap in science and technology.

According to the United Nations, while yet women and girls continue to be excluded from participating fully in science, science and gender equality are vital to achieve the internationally agreed development goals, including the 2030 Agenda for Sustainable Development. Thus, in recent years, the international community has made a great effort to inspire and promote the participation of women and girls in science.

NANBIOSIS wants to acknowledge  the efforts made by scientific women who struggle every day to contribute their bit to Science and highlight their essential role in nowadays research. Especially we want to recognize the work of scientists women involved in our units, whatever is the nature of their contribution: technical, scientific development, management, coordination, direction, etc; just to mention some examples:
Neus Ferrer in the Scientific Direction of Unit 1 Protein Production Platform (PPP)
Pilar Marco and Nuria Pascual in the Management and Scientific Coordination of U2 Custom Antibody Service (CAbS) 
Miriam Royo in the Scientific Direction of U3 Synthesis of Peptides Unit
Laura Lechuga and M.Carmen Estevez in the Direction and Scientific Coordination of U4 Biodeposition and Biodetection Unit
Nora Ventosa and Nathaly Segovia in the Scientific Direction and Technical Coordination of U6 Biomaterial Processing and Nanostructuring Unit
Isabel Oliveira and Teresa Galán in the Coordination of U7 Nanotecnology Unit
Rosa Villa and Gemma Gabriel in the Management and Scientific Coordination of U8 Micro – Nano Technology Unit
Gema Martínez in the Scientific Coordination of U9 Synthesis of Nanoparticles Unit
Fany Peña in the Scientific Coordination of U13 Tissue & Scaffold Characterization Unit
Mª Luisa González Martín in the of Direction and Scientific Coordination of U16 Tissue & Scaffold Characterization Unit
Gemma Pascual and Isabel Trabado in the Coordination of the U17 Confocal Microscopy Service
Mª Virtudes Céspedes in the Scientific Coordination of U18 Nanotoxicology Unit
Beatriz Moreno in the Scientific Direction of Unit 19 Clinical tests lab
Ibane Abásolo in the Scientific Coordination of Unit 20 In Vivo Experimental Platformt
Verónica Crisóstomo in the Scientific Direction of Unit 24 Medical Imaging 

Ana Paula Candiota in the Scientific Coordination of Unit 25 Biomedical Applications I 
Maria Luisa García in the Scientific Direction of U28 NanoImaging Unit from Bionand, recently incorporated to NANBIOSIS

Read More

NANBIOSIS Against Cancer

The World Health Organization, the International Cancer Research Center (IARC) and the International Union Against Cancer (UICC) celebrate February 4 of each year as World Cancer Day

Every year, 14 million new cases of cancer are diagnosed worldwide and the disease causes 8.2 million deaths.

Thanks to scientific research, great advances have been made in the fight against cancer. Through surgery, chemotherapy or radio therapy and, in the last 20 years, through immunotherapy, hormonal treatment or cell therapies, tools have been obtained to improve early diagnosis and treatments, increasing cancer survival by 20%.

The only way to understand cancer and, someday, eradicate it or eliminate the suffering and death due to this disease, is RESEARCH

NANBIOSIS as an ICTS (Singular Scientific and Technical Infrastructures) for biomedical research plays a very important role in the fight against cancer. Some examples are bellow:

Thanks to a coordinated action between units U1 of Protein Production Platform (PPP), U18 of Nanotoxicology and U29 of Nucleic Acid Synthesis, NANBIOSIS is developing nanopharmaceuticals with a high degree of efficacy for the treatment of metastases in colon cancer, by using of proteins with high specificity of binding to metastatic cells and a high degree of permanence in the blood flow, loaded with anti-cancer drugs that are selectively released inside the tumor cells that are going to form the metastases. Through the public financing of a NEOTEC project and a RETOS-COLABORACION and the company NANOLIGENT SL, the first antimetastatic drug on the market will be developed.

The Protein Production Platform-PPP collaborates with research projects whose objective is the development of new cancer therapies based on recombinant modular proteins with the ability to self-assemble. These multimeric complexes have shown, in animal models, a high stability in serum and an improved biodistribution compared to that observed with drugs for clinical use. These principles have been valued in different types of cancer, including colorectal cancer and breast cancer. The modular design of these constructions allows the incorporation or substitution of direct peptides and therefore they are presented as a transversal tool for more effective treatments against cancer. In addition, the PPP has served the Vall d’Hebron Institute of Oncology (VHIO) of Barcelona, the Josep Vilanueva group (CIBERONC) in the field of biomarker study and new targets associated with triple negative breast cancer (TNBC).

Unit 6 of NANBIOSIS Biomaterial Processing and Nanostructuring Unit is working on a project in collaboration with VHIR, financed by the Spanish Goverment and CIBER-BBN, for the development of a new nanomedicine for the treatment of high-risk neuroblastoma, one of the most frequent childhood cancers.

Unit 6 is also working on the project Artificial Lymph Nodes for Cancer ImmunoTherapy (ALYCIA) A project born of a initiative of CIBER-BBN/ CIBERONC to enhance scientific interdisciplinary collaborations between research groups working on oncology and nanomedicine. Researchers of unit 6 will develop Artificial Lymph Nodes (ALN) based on dynamic 3D scaffolds able to promote efficient ex vivo lymphatic cell expansion of relevant phenotypes. Such ALN represent a new approach to lymphocyte expansion, which not only includes artificial Antigen Presenting Cells in suspension like the state-of-the-art expansion techniques, but also mimics the function of the LN ex vivo.

One of the singular capabilities of the U25 of NANBIOSIS NMR: Biomedical Applications I is the acquisition of high quality, high resolution preclinical magnetic resonance imaging/spectroscopy/spectroscopic imaging data. This allows performing leading-edge studies in preclinical cancer models such as noninvasive therapy response follow-up in murine brain tumours, revealing new response biomarkers with translational potential for brain cancer patients.

NANBIOSIS U4 Biodeposition and Biodetection Unit  is currently developing the national project PREDICT Point-of-care Nanoplasmonic Platforms for Novel High-Value Diagnostics and Therapy Follow-Up , which works in the early detection of lung cancer. PREDICT project will use the Unit 4 of Nanbiosis for the multiplexed biofunctionalization of the biosensor chips and their methodology optimisation.

Finally, Unit 20 of NANBIOSIS In Vivo Experimental Platform at VHIR, is the most implicated of the CIBER units on projects in the field of cancer, just to name some of them: H2020-NoCanTher: magnetic nanoparticles against pancreatic cancer through the use of hyperthermia combined with conventional treatment. H2020-Target-4-Cancer: nanotherapy based on polymeric micelles directed against specific receptors of tumor stem cells in colorectal cancer. H2020-DiamStar: nanodiamonds directed against leukemia for the potentiation of chemotherapy. FET-OPEN EvoNano: in silico and tumor-tumor models for the prediction of PK / PD and tumor efficacy of antitumor nanomedicines against tumor stem cells. FIS-ISCIII: polymeric micelles for siRNA and combined therapy against breast cancer tumor stem cells. CarboXigel: hydrogels for the sustained release of chemotherapeutic drugs against the metastatic spread of ovarian cancer. MelanoMir: nanomedicine applied to skin cancer, melanoma, beside other projects promoted by CIBER-BBN.

Read More

Quatsomes. A new family of nanocarriers for drug delivery

The XXXVII edition of the Biennial Meeting of the Spanish Royal Society of Chemistry (RSEQ) will be held from the 26th to the 30th of May in Donostia-San Sebastian

Prof. Jaume Veciana, Scientific Director of NANBIOSIS and unit 06  of NANBIOSIS -ICTS  Biomaterial Processing and Nanostructuring Unitwill present on May 28th 2019 a lecture entitled “Quatsomes. A new family of nanocarriers for drug delivery” at the Simposium “From Chemistry to Nanomedicine” (http://bienal2019.com/simposios.php). In this lecture the advantages and disavatages of such a kind of nanocarriers will be presentaed as well as some of their applications as nanomedicines.”

Deadline for sending abstracts: January 30 (http://bienal2019.com/en/communications.php) 

Early registration until March 2. 

There are scholarships available for students members of the RSEQ and for any of the groups indicated in http://bienal2019.com/becas.ph

Read More