+34 620 10 75 37info@nanbiosis.com

News U9

News U9

Gold Nanoparticles Synthesized by NANBIOSIS U9 will destroy tumor cells without drugs

A CIBER-BBN team at the University of Zaragoza has developed intelligent shuttles (cell vesicles -exosomes-) to transfer nanoparticles to the interior of tumor cells and destroy them by means of heat and without drugs, following the “Trojan horse” strategy.

NANBIOSIS U9, “Synthesis of Nanoparticles Unit has developed the procedure to be able to internalize gold nanoparticles, with surface plasmon in the NIR electromagnetic range, inside extracellular vesicles derived from stem cells. The synthesis of the gold nanoparticles has been produced according to the synthesis procedures of UNIT 9 of the ICTS NANBIOSIS based on the galvanic substitution reaction in the liquid phase of Co atoms by Au+3 ions, generating a hollow structure whose geometry gives gold nanoparticles unique optical properties that allow the absorption of NIR light and its conversion into heat” , explain the researchers of NANBOSIS U9 Pilar Martín-Duque, Victor Sebastián and Jesús Santamaría.

They are gold nanoparticles belonging to what is known as “plasmonic nanoparticles” that have the ability to heat up when receiving near-infrared radiation, which penetrates the body. It is, therefore, a treatment without drugs, which uses the heat generated by the particles to cause cell death around them. These particles are taken to the tumor by exosomes, having been proved efectived in animal models.

“We have managed to reduce or eliminate tumors in mice without drugs, only with the heat generated by irradiating them with a laser. In other words, we inject the exosomes with the nanoparticles into the tail of the mouse and they alone “search” for the tumor, not only in conventional models but also in multinodular ones, similar to metastatic processes”, explains Pilar Martín Duque.

For futher information:

https://www.ciber-bbn.es/noticias/desarrollan-lanzaderas-inteligentes-para-destruir-celulas-tumorales-desde-su-interior-mediante-calor-y-sin-farmacos

Article of reference:

Transfer of photothermal nanoparticles using stem cell derived small extracellular vesicles for in vivo treatment of primary and multinodular tumors. María Sancho-Albero, Miguel Encinas-Giménez, Víctor Sebastián, Estela Pérez, Lluis Luján, Jesús Santamaría, Pilar Martín-Duque Journal of Extracellular Vesicles 2022 https://onlinelibrary.wiley.com/doi/full/10.1002/jev2.12193

Read More

Colloidal nanocrystals for energy applications

Semiconductors are materials used in a wide ranfe of applications since they are capable of capturing light and allowing us to take advantage of it. In addition, if we reduce its size to the nanometric scale we can activate additional very interesting properties

On October 16, “Technoscience and Energy” took place in Inseec, Lyon (France), a science-industry transfer event between French and Spanish companies and researchers from the energy sector in France. Among the invited speakers was María Bernechea Navarro, ARAID Investigator, at the Institute of Nanoscience and Materials of Aragon at University of Zaragoza-INMA.

In her talk, entitled “COLLOIDAL NANOCRYSTALS FOR ENERGY APPLICATIONS”, María Bernechea showed the development of nanomaterials stabilized in solution (to facilitate working with them), composed of abundant and non-toxic elements, as well as their use in various applications related to clean energy.

“We synthesize colloidal nanosemiconductors that are used for different applications. We mainly use these nanomaterials to harvest solar light and convert it into electrical current (solar cells) or remove pollutants in wastewater (using the materials as photocatalysts). More recently we have started to study the incorporation of these materials on carbon supports to fabricate electrodes that can be used in electrochemical storage devices (batteries or supercapacitors). These nanosemiconductors are fabricated at the NANBIOSIS U9 Synthesis of Nanoparticles Unit of CIBER-BBN and the INMA”, has explained María.

Last October 29, María Bernechea gave also a talk at the Faculty of Sciences of La Coruña entitled, “Colloidal Nano-Semiconductors for solar cells and other applications” that is avalilable in youtube. Dr. Bermechea expressly thanked the access to the ICTS NANBIOSIS for the development of these semiconductors.

Article of reference: Aina, S., Villacampa, B., Bernechea, M., Earth-abundant non-toxic perovskite nanocrystals for solution processed solar cells, Mater. Adv., 2021, 2, 4140 [DOI]

Read More

New project ExofluidTT for the production of nanovesicles using microfluidics applicable on Biomedicine

Víctor Sebastián Cabeza, researcher of NANBIOSIS U9 Synthesis of Nanoparticles of CIBER-BBN and the Institute of Nanoscience and Materials of Aragón, INMA, has obtained a research grant in the XX National Contest of the Ramón Areces Foundation in the category of Life and Matter Sciences with a funding of € 112,000 for the development in 3 years of nanovesicles using microfluidic technology.

As explained by Victor Sebastian “the characterization of the nanovesicles will be carried with the equiment and expertise of NANBIOSIS Unit 9

The project entitled “Engineering of extracellular vesicles-exosomes using microfluidic technology for its application in biomedicine: ExoFluidTT” aims to develop new procedures to improve the selectivity and efficiency of therapeutic treatments, such as, for example, cancer. The nanocarriers considered in ExoFluidTT are called exosomes and are nano-sized extracellular vesicles, produced by the patient’s own cells and whose structure and composition is so complex that their production by synthetic procedures is not possible. The application of these vesicles is creating a revolution in cellular treatments, since they allow to face the problems in which artificial nanocarriers fail. However, its clinical use is complex, due to the difficulty of its production, isolation and reconfiguration for the treatment of diseases.

The ExoFLuidTT project aims to design an innovative platform based on the use of exosomes for its application in targeted therapies. The basis of this innovative platform is based on the use of microfluidic technology to obtain the exosomes of the patient’s cells. These exosomes would be isolated for their reconfiguration aimed at obtaining nanocarriers that allow the administration of drugs in a targeted manner. This microfluidic technology consists of a complex system of pipes and micrometric-scale reactors (similar to the dimensions of a human hair) that mimic the highly efficient network of blood capillaries that the human body has, so that, in an efficient way, they can be manipulate volumes of fluid on the scale of picoliters (one millionth of a drop).

This project is based on the previous experience of Víctor Sebastián Cabeza in the development of microfluidic technology for multiple uses in Catalysis, Materials Engineering and Nanobiomedicine, as well as the experience of his work team, ExoFLuidTT, in the use of exosomes as therapeutic nanocarriers. This team has recently published a study where they were able to successfully develop exosomes modified with palladium nanosheets for the selective activation of prodrugs in-vitro and to treat tumor cells selectively. The results of this work were published in the prestigious journals Nature Catalysis and Nature Protocols and open a therapeutic pathway that can have a great social impact.

The project work team, led by Víctor Sebastián, is made up of CIBER-BBN researchers Manuel Arruebo and Jesús Santamaría, all of them professors from the Department of Chemical Engineering and Environmental Technologies at UNIZAR, and researchers from INMA and IISAragón . Researchers Silvia Irusta (INMA / CiberBBN / IIS Aragón) and Pilar Martín Duque (ARAID / IACS / IISAragón) collaborate with this team.

Read More

New drug delivery system for prolonged pain relief

The management of musculoskeletal pain is a key challenge due to the short duration of anesthetic effect produced by existing clinical treatments, in addition to their potential side effects. Researchers from the CIBER-BBN, the Institute of Nanoscience and Materials of Aragón (INMA), CSIC-University of Zaragoza and the Institute of Health Research of Aragón (IIS Aragón), in collaboration with researchers from the Faculty of Veterinary Medicine of the University of Zaragoza and with participation of NANBIOSIS Unit 9 Synthesis of Nanoparticles Unit, have developed nanogels loaded with nanocrystals of bupivacaine (an anesthetic commonly used in epidural anesthesia and in the control of postoperative pain) obtaining a high drug content for a prolonged duration of local anesthesia.

These nanogels are an alternative to the most prescribed analgesics (antipyretics, steroids and opioids), which frequently present adverse effects such as nausea, vomiting, dizziness and physical dependence, among others. They consist of a biocompatible polymer derived from polyethylene glycol (PEG) that has heat-sensitive properties, so that they would be injected at room temperature and upon reaching body temperature after administration they undergo a change in their structure, resulting in a reduction in their volume. and transforming into a hydrophobic structure, thus controlling the release of the drug encapsulated within.

According to Manuel Arruebo, INMA-CIBER-BBN researcher, “we have validated this new way of dispensing the local anesthetic both in cell cultures and in animal experiments, showing that it increases the duration of sciatic nerve block twice compared to the same dose of free anesthetic. The synthesis of the drug nanocrystals has been carried out in NANBIOSIS U9 (from CIBER-BBN and University of Zaragoza) thanks to the wet chemical synthesis systems of the platform.

The prolonged duration of anesthetic action can be explained by the regional immobilization of the nanogels at the injection site around the sciatic nerve due to their hydrophobic nature, preventing the diffusion of drug particles and their rapid elimination while interacting efficiently with the tissues thanks to to its temperature-induced conformational change. Studies have shown that this delivery system has low toxicity and does not give rise to an inflammatory response due to the slow release of the drug and the high biocompatibility of the polymer used.

The encapsulation of drug nanocrystals is a promising strategy, which allows reducing the total amount of drug necessary to produce pain relief with the consequent benefits obtained from the reduction of toxicity.

For their part, the researchers Teresa Alejo (INMA) and Víctor Sebastián (CIBER-BBN-INMA) affirm that “through these systems we seek to obtain an effective vehicle capable of prolonging the anesthetic effect in its place of action, avoiding as far as possible the side effects. In this way, they could be used to avoid systemic administration, reduce high concentrations in the blood and reduce the unwanted side effects of some conventional treatments, since they allow to control the release of the drug within the desired therapeutic range, avoiding the consequences of an excess of drug and the negative effects that this implies ”.

Likewise, with this technique the satisfaction and comfort of the patient is considered, since with a single dosage a prolonged therapeutic effect would be achieved. In Europe, with more than 500 million days of sick leave per year, musculoskeletal pain causes almost 50% of all absences from work lasting at least three days and 60% of permanent absences from work. Consequently, pain has a huge impact on work productivity. Some data indicate that the annual cost of pain is greater than the cost of heart disease, cancer and diabetes.

Therefore, the development of an effective injectable local anesthetic with a prolonged duration of action can improve the quality of life of patients affected by these diseases.

Article of refernce:

Teresa Alejo, Laura Usón, Guillermo Landa, Martin Prieto, Cristina Yus Argón, Sara García-Salinas, Ricardo de Miguel, Ana Rodríguez-Largo, Silvia Irusta, Victor Sebastián, Gracia Mendoza and Manuel Arruebo. Nanogels with High Loading of Anesthetic Nanocrystals for Extended Duration of Sciatic Nerve Block, ACS Appl. Mater. Interfaces, 13, 15, 17220–17235. 2021 April 6. [DOI]

Read More

NANBIOSIS Scientific Women in the International Day of Women and Girls in Science

Today February 11 is the International Day of Women and Girls in Science, a day to raise awareness of the gender gap in science and technology.

According to the United Nations, while yet women and girls continue to be excluded from participating fully in science, science and gender equality are vital to achieve the internationally agreed development goals, including the 2030 Agenda for Sustainable Development. Thus, in recent years, the international community has made a great effort to inspire and promote the participation of women and girls in science.

NANBIOSIS wants to acknowledge  the efforts made by scientific women who struggle every day to contribute their bit to Science and highlight their essential role in nowadays research. Especially we want to recognize the work of scientists women involved in NANBIOSIS, whatever is the nature of their contribution: technical, scientific development, management, coordination, direction, etc; just to mention some examples:
Neus Ferrer and Mercedes Márquez in the Scientific Direction and Coordination of Unit 1 Protein Production Platform (PPP)
Pilar Marco and Nuria Pascual in the Management and Scientific Coordination of U2 Custom Antibody Service (CAbS) 
Miriam Royo in the Scientific Direction of U3 Synthesis of Peptides Unit
Nora Ventosa and Nathaly Segovia in the Scientific Direction and Technical Coordination of U6 Biomaterial Processing and Nanostructuring Unit
Isabel Oliveira and Teresa Galán in the Coordination of U7 Nanotecnology Unit
Rosa Villa and Gemma Gabriel in the Management and Scientific Coordination of U8 Micro – Nano Technology Unit
Gema Martínez in the Scientific Coordination of U9 Synthesis of Nanoparticles Unit
Fany Peña in the Scientific Coordination of U13 Tissue & Scaffold Characterization Unit
Mª Luisa González Martín and Margarita Hierro in the of Direction and Scientific Coordination of U16 Tissue & Scaffold Characterization Unit
Gemma Pascual and Isabel Trabado in the Coordination of the U17 Confocal Microscopy Service
Isolda Casanova in the Scientific Coordination of U18 Nanotoxicology Unit
Beatriz Moreno in the Scientific Direction of Unit 19 Clinical tests lab
Ibane Abásolo in the Scientific Coordination of Unit 20 In Vivo Experimental Platformt
Verónica Crisóstomo in the Scientific Direction of Unit 24 Medical Imaging 
Ana Paula Candiota in the Scientific Coordination of Unit 25 Biomedical Applications I 
Maria Luisa García in the Scientific Direction of U28 NanoImaging Unit from Bionand, recently incorporated to NANBIOSIS, Anna Aviñó in the Scientific Coordination of U29 Oligonucleotide Synthesis Platform (OSP) – and

Nerea Argarate in the coordination of NANBIOSIS

Thanks to all of you and your teams!

Read More

Ignacio García and Javier Bonet present their work on the CADENCE project in a one-minute video

Ignacio García and Javier Bonet, researchers from the Nanoporous Films and Particles (NFP) group and Nanbiosis U9 Synthesis of Nanoparticles Unit of the CIBER-BBN and the Institute of Nanoscience and Materials Science at the University of Zaragoza have presented their work on the CADENCE project in a video of a minute of duration that has been submitted to the #QueSigalaCiencia scientific dissemination contest promoted by the CIBER-BBN.

#QueSigaLaCiencia is a campaign on social networks that wants to explain to society, from an optimistic perspective, the importance of research and the work carried out by the research staff of the CIBER. The call -associated with the campaign- has had a high participation of the groups, who have presented 69 videos from all the scientific areas of the center. Researchers took on the challenge of telling their research in one minute. The works presented in the #QueSigaLaCiencia call have the possibility of opting for the prize that the public will give through Twitter (highest number of likes).

Their research work in the project CADENCE consists of designing and manufacturing nanopharmaceuticals that will fight cancer, not only in a more effective way, but also in a more selective way , avoiding damaging healthy cells. “By striking the tumor with light, which, for example, comes from a laser, the particles created by these researchers are capable of creating toxic substances for the cancer cell and, in addition, eliminating essential nutrients for the tumor to continue its growth ·.

The work carried out in NANBIOSIS is recognized by these researchers as “fundamental to continue innovating, advancing and providing solutions to different problems”.

CADENCE is a European Project (Catalytic Dual-Function Devices Against Cancer) that aims for a breakthrough in cancer therapy by developing a new therapeutic concept. The central hypothesis is that a growing tumor can be treated as a special type of reactor in which reaction conditions can be tailored to achieve two objectives: i) molecules essential to tumor growth are locally depleted and ii) toxic, short-lived products are generated in situ

Read More

NANBIOSIS participation in the Technology and business Forum “Technological challenges derived from COVID-19”

The pandemic has led companies and researchers to reorient their plans and projects to meet the demands of society.

Different examples of these new challenges will be seen at the next Technology and Business Forum on Thursday, December 10, covering from new tissues, better masks, diagnostic tests, epidemiological models and clinical equipment … All this, from an analysis both from the perspective industrial and research.

The Technological and Business Forum is organized by the Aragón Engineering Research Institute (I3A), the SAMCA Chair of Technological Development, CEOE-Aragón and the Zaragoza Chamber. On this occasion, it will be held online and it will be an opportunity to talk about technologies and COVID-19, to consider the future after this pandemic, given the impact it has had on society and the economy.

At 12:00 the session on “Contributions from research to different COVID challenges· is scheduled, in which, M. Pilar Lobera. researcher at NANBIOSIS U9 Synthesis of Nanoparticles Unit (from CIBER-BBN and- Institute of Nanoscience and Materials of Aragon -INMA- talks on “Challenges for respiratory protection: types of membranes“·
Moderator: Pablo Laguna, Scientific Director of NANBIOSIS U27 High Performance Computing and Director of the SAMCA Chair of Technological Development and I3A

Read More

Jesús Santamaría, Scientific Director of NANBIOSIS Unit 9, candidate to the Rectorate of the University of Zaragoza

Jesús SantamaríaScientific Director of NANBIOSIS U9, Synthesis of Nanoparticles Unit, runs for the elections to the Rectorate of the University of Zaragoza.

Jesús Santamaría Ramiro, professor in the Department of Chemical Engineering and Environmental Technologies, at the Faculty of Sciences, has presented his candidacy to the Rectorate of the University of Zaragoza this week.

The opinion group Proyecto Unizar, the germ of this candidacy, has also been presented. Proyecto Unizar, which motto is “Another University is possible” includes more than 60 members of the university community and more than a hundred supporters, among them, several members of CIBER-BBN NANBIOSIS Units in Zaragoza University,-U27 High Performance Computing and U13 Tissue & Scaffold Characterization Unit. besides NANBIOSIS Unit 9.

As of November 9, the program of Proyecto Unizar will be public through its website, made up of more than 400 actions aimed at substantially improving the University of Zaragoza.

Elections will be held on November 24 by electronic vote. If a second round is necessary, it will take place on December 10.

Read More

The University of Zaragoza, in the elite of the 500 best universities in the world

The Academic Ranking of World Universities (ARWU), known as
Shanghai Ranking, which was made public on August 15, once again places the University of Zaragoza among the elite of the 500 best universities in the world.

This indicator organizes up to 20,000 university centers worldwide. Among the keys that have been able to positively influence the results of the research, according to the Vice Chancellor for Prospect, Sustainability and Infrastructure of the University of Zaragoza, Francisco Serón, are the increase in public campus funding for four years as well as the quality of their Scientists.

The University of Zaragoza houses three of NANBIOSIS Units:

U9 Synthesis of Nanoparticles Unit, led by Jesús Santamaría and Gema Martínez

U13 Tissue & Scaffold Characterization Unit, led by Miguel Ángel Martínez Barca and Fany Peña

U27 High Performance Computing , led by Pablo Laguna

Since 2003, every August, the Academic Ranking of World Universities (ARWU), known as “Shanghai Ranking,” is published, one of the international reference studies to compare higher education institutions. The ranking selects the 1,000 best educational institutions from a global point of view, among the 20,000 higher education centers that exist.

It is possibly the most famous and most recognized university analysis that values the quality of institutions in the generation of knowledge. The research community respects the results of these rankings because they are based on objective data and their classification is reproducible.

Source:
https://www.aragondigital.es/2019/08/15/la-uz-en-la-elite-de-las-500-mejores-universidades-del-mundo-segun-el-ranking-de-shanghai/

Read More

Biocidal releasing dressings of natural origin to treat topical wounds and avoid antibiotic resistance

Researchers of NANBIOSIS U9 Synthesis of Nanoparticles Unit, of the CIBER-BBN at the University of Zaragoza, use thymol as a natural biocide, a component present in the essential oils of thyme and oregano, thus fighting against the predictions that in 2050 there will be more deaths from infections associated with antibiotic-resistant bacteria than from cancer.

Some topical wounds caused by burns, by surgical procedures, diabetic foot ulcers, fistulas, pressure ulcers, etc. they can become infected and become chronic, rendering current treatments ineffective. Currently, the devitalized tissue is removed, the area is cleaned, it is drained and depending on the microbial presence present (fungi and / or bacteria) a topical antimicrobial treatment is used. However, in many cases it is inefficient, in addition the use of antibiotics favors the potential development of resistance

Researchers of the NFP group of the CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) belonging to the University Institute in Nanoscience of Aragon (INA) of the University of Zaragoza, which coordinates unit 9 of NANBIOSIS, have developed biocide-releasing dressings of origin natural to avoid bacterial resistance to antibiotics.
Specifically, thymol has been used as a natural biocide, which is a component present in the essential oils of thyme and oregano. Said dressings have been validated in bacterial cultures and also in animal experiments showing that they are capable of reducing bacterial infections without harming skin cells (fibroblasts and keratinocytes).

Reducing bacterial load without damaging adjacent tissue

The team of researchers, led by Silvia Irusta and Manuel Arruebo, together with Gracia Mendoza (currently at the Instituto de Investigación Sanitaria de Aragón (IIS Aragón), in collaboration with the Lluís Luján group of the Veterinary School, deliberately infected a wound topical created in the animal model with Staphylococcus aureus, a common pathogen in cutaneous bacterial infections and in infections associated with implants.On these wounds, the biocidal release dressings of natural origin were applied and it was possible to reduce the bacterial load present without showing signs of irritation. or inflammation in adjacent tissue. Following this line of research, in a subsequent study (ACS Applied Bio Materials 2020, 3, 5, 3430–3439), the same team demonstrated that these dressings show less local toxicity than even one of the most commonly used local antiseptics, bactericides and fungicides, chlorhexidine.

The doses required to eliminate the infection using biocides of natural origin are greater than the equivalent doses of antibiotics, however, given the tremendous concern about antibiotic resistance, this proposal may be a future alternative. These results, which have been published in the European Journal of Pharmaceutics and Biopharmaceutics, will undoubtedly help to counteract the forecasts issued by the Centers for Disease Control and Prevention of the United States, which predict that in 2050 more people will die from infections associated with antibiotic-resistant bacteria than from cancer. Therefore, any validated solution that can replace antibiotics without generating resistance can overcome some of their limitations. In the future, the task force will seek to increase the effectiveness of these naturally occurring biocides by combining them with other antiseptics.

Reference article:

Drug-eluting wound dressings having sustained release of antimicrobial compounds Enrique Gámez-Herrera, Sara García-Salinas, Sofía Salido, María Sancho-Albero, Vanesa Andreu, Marta Pérez, Lluís Luján, Silvia Irusta, Manuel Arruebo, Gracia Mendoza. Eur J Pharm Biopharm. DOI: 10.1016/j.ejpb.2020.05.025

Read More