+34 620 10 75 37info@nanbiosis.com

Preclinical validation tissue, biomaterialls and surfaces characterization -Services

Preclinical validation tissue, biomaterialls and surfaces characterization -Services

U18-S01.

In vitro Toxicology

The aim of this service is to evaluate the in vitro toxicity of compounds in different types of normal human cells in which we determine the effect using different types of assays including MTT, LDH release and caspase activation. The cellular models that we offer include cells from kidney, liver, bone marrow stroma or peripheral blood. Additionally, we are offering immunology assays including detection of NO production and chemotaxis and phagocytosis assays.

Customer benefits

The costumer will benefit from more than 20 years of experience of the researchers involved in the service that have performed the in vitro evaluation of the toxicity of different nanoparticles and other types of compounds. We offer also the possibility of setting up new in vitro assays or to offer other cellular models that could be of interest for the costumer. Moreover, the conditions of the assays are flexible and will be adapted to the needs of each specific compound.

Target customer

The offered service can be of interest to research groups of academia or companies willing to test the toxicity of any compound in vitro.

References

  • Falgàs A, Pallarès V, Unzueta U, Núñez Y, Sierra J, Gallardo A, Alba-Castellón L, Mangues MA, Álamo P, Villaverde A, Vázquez E, Mangues R, Casanova I. Specific Cytotoxic Effect of an Auristatin Nanoconjugate Towards CXCR4+ Diffuse Large B-Cell Lymphoma Cells. Int J Nanomedicine. 2021 Mar 5;16:1869-1888. doi: 10.2147/IJN.S289733.
  • Núñez Y, Garcia-León A, Falgàs A, Serna N, Sánchez-García L, Garrido A, Sierra J, Gallardo A, Unzueta U, Vázquez E, Villaverde A, Mangues R, Casanova I. T22-PE24-H6 Nanotoxin Selectively Kills CXCR4-High Expressing AML Patient Cells In Vitro and Potently Blocks Dissemination In Vivo. Pharmaceutics. 2023 Feb 22;15(3):727. doi: 10.3390/pharmaceutics15030727.
Read More

U18-S02.

In vivo Nanotoxicology

The aim of this service is to evaluate the in vivo biodistribution, toxicity and therapeutic index of nanoparticles and drug-loaded nanoparticles. Thus, we offer different mouse models in which we can determine the biodistribution of nanoparticles, with or without loaded drug, in normal and tumor tissues. Moreover, we can also determine the toxicity of the compounds and their antitumor activity in different tumor models. In the service we have subcutaneous and orthotopic/disseminated models of lymphoma, leukemia and colorectal, endometrium, head and neck carcinomas. Moreover, we have also available PDX models of colorectal and endometrium cancer. We can also offer the possibility to set up new animal models of other tumor types.

Customer benefits

The costumer will benefit from the experience of the researchers involved in the service that have performed the in vivo evaluation of a high number of diverse nanoparticles. The service has also high expertise in developing new cancer animal models. Thus, we offer also the possibility of setting up new models of any cancer type that fit with the needs of the costumer. Moreover, the conditions of the assays are flexible and will be adapted to the need of each specific compound.

Target customer

The offered service can be of interest to research groups of academia or companies willing to test the biodistribution, toxicity or antitumor activity of nanoparticles or drug-loaded nanoparticles in vivo.

References

  • Martínez-Torró C, Alba-Castellón L, Carrasco-Díaz LM, Serna N, Imedio L, Gallardo A, Casanova I, Unzueta U, Vázquez E, Mangues R, Villaverde A. Lymphocyte infiltration and antitumoral effect promoted by cytotoxic inflammatory proteins formulated as self-assembling, protein-only nanoparticles. Biomed Pharmacother. 2023 Aug;164:114976. doi: 10.1016/j.biopha.2023.114976.
  • Rioja-Blanco E, Arroyo-Solera I, Álamo P, Casanova I, Gallardo A, Unzueta U, Serna N, Sánchez-García L, Quer M, Villaverde A, Vázquez E, Mangues R, Alba-Castellón L, León X. Self-assembling protein nanocarrier for selective delivery of cytotoxic polypeptides to CXCR4+ head and neck squamous cell carcinoma tumors. Acta Pharm Sin B. 2022 May;12(5):2578-2591. doi: 10.1016/j.apsb.2021.09.030.
  • Falgàs A, Garcia-León A, Núñez Y, Serna N, Sánchez-Garcia L, Unzueta U, Voltà-Durán E, Aragó M, Álamo P, Alba-Castellón L, Sierra J, Gallardo A, Villaverde A, Vázquez E, Mangues R, Casanova I. A diphtheria toxin-based nanoparticle achieves specific cytotoxic effect on CXCR4+ lymphoma cells without toxicity in immunocompromised and immunocompetent mice. Biomed Pharmacother. 2022 Jun;150:112940. doi: 10.1016/j.biopha.2022.112940.
    -Medina-Gutiérrez E, García-León A, Gallardo A, Álamo P, Alba-Castellón L, Unzueta U, Villaverde A, Vázquez E, Casanova I, Mangues R. Potent Anticancer Activity of CXCR4-Targeted Nanostructured Toxins in Aggressive Endometrial Cancer Models. Cancers (Basel). 2022 Dec 23;15(1):85. doi: 10.3390/cancers15010085.
  • Sala R, Rioja-Blanco E, Serna N, Sánchez-García L, Álamo P, Alba-Castellón L, Casanova I, López-Pousa A, Unzueta U, Céspedes MV, Vázquez E, Villaverde A, Mangues R. GSDMD-dependent pyroptotic induction by a multivalent CXCR4-targeted nanotoxin blocks colorectal cancer metastases. Drug Deliv. 2022 Dec;29(1):1384-1397. doi: 10.1080/10717544.2022.2069302.
  • Serna N, Falgàs A, García-León A, Unzueta U, Núñez Y, Sánchez-Chardi A, Martínez-Torró C, Mangues R, Vazquez E, Casanova I, Villaverde A. Time-Prolonged Release of Tumor-Targeted Protein-MMAE Nanoconjugates from Implantable Hybrid Materials. Pharmaceutics. 2022 Jan 14;14(1):192. doi: 10.3390/pharmaceutics14010192.
  • Pallarès V, Unzueta U, Falgàs A, Aviñó A, Núñez Y, García-León A, Sánchez-García L, Serna N, Gallardo A, Alba-Castellón L, Álamo P, Sierra J, Cedó L, Eritja R, Villaverde A, Vázquez E, Casanova I, Mangues R. A multivalent Ara-C-prodrug nanoconjugate achieves selective ablation of leukemic cells in an acute myeloid leukemia mouse model. Biomaterials. 2022 Jan;280:121258. doi: 10.1016/j.biomaterials.2021.121258.
Read More

U17-S01. Confiocal Microscopy Service (Onsite) OUTSTANDING

Spectral confocal module coupled to an inverted microscope (4 objectives: 10x, 20x, 40x and 63x) equipped with three channels of spectral detection, AOBS (“Acousto-optical beam splitter”) and resonant scanner system. Argón, He/Ne and UV lasers. Incubation cabin for cells, which allows tracking of real-time processes.

Read More

U16-S01. XPS (Remote) OUTSTANDING

Use of the system . X-ray photoelectron spectroscopy to measure quantitative elemental composition of surfaces (%) (except H and He).

Temporarily OUT OF ORDER

Read More

U16-S02. Ellipsometry (Remote) OUTSTANDING

Use of the system to measure the thickness of layers, and the composition, porosity and roughness of materials on a surface.

Read More

U16-S03. Calorimetry (Remote) OUTSTANDING

Tests in real time to measure:
·· Molecule-molecule interactions: Protein-protein, Receptor-ligand, Antibody-antigen, Biomaterial-molecule interactions, Biomaterial-cell interactions.
·· Microbial growth.
·· Cell metabolism.
Experiments of stability, growth,
etc, perfusion and dilution

Read More

U16-S04. Characterization by Tof-SIM (Remote) OUTSTANDING

Surface analysis of organic and inorganic materials (mass spectrum), map of chemical elements present in the surface of the sample (image), profile analysis shows sample analysis in depth.

Read More

U15-S01. Magnetometry (Remote) OUTSTANDING

Magnetometry on nanoparticles in solid form, ultra thin films, powders, liquids and even slurries:

  • Magnetization curves.
  • Coercitivity (normal and remanent).
  • Magnetization vs. time curves.
  • First Order Reversal Curves (FORC) diagrams.
  • Diamagnetic and paramagnetic susceptibility.
  • S* (measurement of the gradient in the second quadrant).
  • Remanent and saturation magnetization.
  • Initial permeability.

Measurements of magnetic properties of materials:

  • Diamagnetic, paramagnetic and ferromagnetic materials.
  • Magnetic recording media.
  • Magnetoresistive Random-Access Memory (MRAM).
  • Amorphous metals.
  • Giant Magnetoresistance Effect (GMR).

Geophysical Research:

  • Measurements of magnetization of rock, sediment and organic samples.

Biomedical Research:

  • Detection of small nanoparticles inside biological tissue in order to study the biodistribution and toxicity.
  • Study of the iron levels which are associated with some types of neurodegenerative disease.
Read More

U15-S02. Relaxometry (Remote) OUTSTANDING

Measurement of the relaxation times in aqueous solutions and biological samples containing superparamagnetic nanoparticles as contrast agents for MR images. For T1 in the continuous range 10 kHz to 80MHz; for T2 in the range 10 MHz to 80MHz.

Characterization of contrast agents for MR imaging, ascertaining their relaxivity and the dominant effect.

NMR relaxometry technique is an important analytical tool for NMR research and material characterization in both industrial and academic environments and has been successfully applied in a wide range of fields:

– Pharmaceutical Applications:

  • R&D of MRI contrast agents
  • Proteinstudies
  • R&D for formulations (e.g. properties of solutions; liposome carriers)
  • Quality control of products in manufacturing

– Polymers Applications:

  • R&D for new polymer materials
  • Control of levels of polymer additive
  • Quality control of products in manufacturing

– Oil, gas and petroleum applications:

  • Oil and gas surveying – rock pore size evaluation
Read More

U14-S02. Flow Cytometry (Onsite&Remote) OUTSTANDING

Cellular phenotyping, cytokine assays, profiferation assays, viability and apoptosis.

Read More