+34 679 490 537info@nanbiosis.com

Posts Taged colorectal-cancer

Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs

Scientists of NANBIOSIS  Units U1. Protein Production Platform (PPP),  and U18. Nanotoxicology Unit, have recently published an article titlled “Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs” in the Journal of  Controlled Release.

Loading capacity and drug leakage from vehicles during circulation in blood is a major concern when developing nanoparticle-based cell-targeted cytotoxics. To circumvent this potential issue it would be convenient the engineering of drugs as self-delivered nanoscale entities, devoid of any heterologous carriers. In this context, we have here engineered potent protein toxins, namely segments of the diphtheria toxin and the Pseudomonas aeruginosa exotoxin as self-assembling, self-delivered therapeutic materials targeted to CXCR4+ cancer stem cells. The systemic administration of both nanostructured drugs in a colorectal cancer xenograft mouse model promotes efficient and specific local destruction of target tumor tissues and a significant reduction of the tumor volume. This observation strongly supports the concept of intrinsically functional protein nanoparticles, which having a dual role as drug and carrier, are designed to be administered without the assistance of heterologous vehicles.

Read More

Nanoligent, the spin off created by the Directors of Units 1 and 18 of NANBIOSIS, awarded for the best company in Health Sciences given by the law firm RCD

NANOLIGENT is awarded for the best company in Health Sciences  Price given by the law firm RCD.

The XXIII Investment Forum of ACCIÓ 2018 was celebrated last June 20th  with the aim of connecting with the world of private investment.  ACCIÓ, Company Competitiveness Agency, had previously published a catalog of startups with the most potential startups in Catalonia, projects selected from more than 100 candidatures were presented for the 2018 Investment Forum of ACTION. The 50 companies in this catalog stand out due to their differential nature and innovative value, due to their social impact and the involvement of the entrepreneurial team. They are companies operating in key sectors for the economy of the future such as life and health sciences, ICT and other crucial cutting-edge technologies for industry 4.0 including 3D printing, IoT and virtual reality. The 21 finalists had the opportunity to present themselves to a large number of investors and venture capital funds during the Forum’s celebration, an audience of 600 people who voted the 9 best companies to participate in the final.  Nanoligent, S.L., the company stablished on March 2017 by professors Dr. A. Villaverde and Dra. E. Vázquez from NANBIOSIS Unit 1, professor Dr. M. Mangués from NANBIOSIS Unit 18, and entrepreneur Dr. M. Rodríguez won the award for the best company in Health Sciences given by the law firm RCD (Rousaud Costas Duran)

NANOLIGENT’s mission is to improve the lives of patients by designing new medications that selectively target the cells affected by disease. With this approach NANOLIGENT develops treatments that are more effective and have less adverse effects than classical drugs using state-of-the-art protein engineering and nanobiotechnology. Currently Nanoligent is working on antimetastatic medication for colorectal cancer and its business model is carrying out a first clinical trial which demonstrates the efficacy of the medication in humans and allows the company to sign a license agreement with a pharmaceutical company

Read More

NANOLIGENT, the first drug designed to eliminate metastases stem cells

NANBIOSIS researchers have developed a nanomedicine for the treatment of metastases by the selective elimination of tumor stem cells. It is a system based on nanoparticles that transport a chemotherapeutic drug and release it into cancer cells.

The research team, led by Esther Vázquez and Antonio Villaverde, Strategy Director of NANBIOSIS U1. Protein Production Platform (PPP), in the IBB-UAB, and Ramon Mangues, Scientific Director of NANBIOSIS U18. Nanotoxicology Unit, in the Sant Pau Hospital, have already created a prototype of the drug and have conducted in vivo trials in animal models of colorectal cancer. They have demonstrated their effectiveness, selective biodistribution and low toxicity.

To promote the development of the drug towards the clinic, the reserachers have created Nanoligent a start-up company, based in Barcelona, led by Manuel Rodríguez, a professional with experience in the field of investment and the creation and growth of biotech companies. The technology is patented in Europe and USA and has been licenced to Nanoligent

The therapy created by the researchers is aimed at blocking the development of metastasis, mainly of colorectal cancer, through new strategies aimed at certain cell types. It consists of a new drug administration system based on protein nanoparticles that selectively conduct the therapeutic agent in tumor cells. The drug acts only on cancer cells, because it is based on the specific interaction between a protein present in the nanoparticle and a cellular receptor (CXCR4), which is overexpressed in tumor cells. “This interaction is crucial, because it allows attacking only tumor cells and not healthy cells, thus avoiding secondary effects derived from classical chemotherapy,” emphasizes Antonio Villaverde.

The CXCR4 receptor is overexpressed in many types of tumors, so that “this technology can be directed to the treatment of different types of neoplasms in addition to colorectal cancer and derived metastases, such as lymphoma, leukemia or endometrial cancer, in animal models already available to the group of Sant Pau “, comments Ramon Mangues. In addition, nanoparticles are compatible with a huge variety of possible drugs and therefore they become highly versatile vehicles that can carry a wide range of therapeutic molecules.

“There is an urgent need for more effective and personalized treatments for cancer. The toxicity and the lack of efficacy of conventional drugs are pushing alternative experimental strategies directed and designed to achieve only defined cell types. Nanoparticles, thanks to their capacity for penetration, dissemination and functionality, offer a promising nanomedical landscape to create new drugs,” explains Esther Vázquez.

In this direction, the technology of Nanoligent opens a new door in anti-pelagic therapy, as it allows to design a treatment with greater cellular specificity than that of existing treatments, while offering greater biosecurity and biodegradability and lower toxicity,” he said. Antonio Villaverde points out.

Currently, there are no drugs in the market that selectively eliminate metastatic stem cells. Although Nanoligent technology is still under development, researchers say they have a lot of potential and consider that it could have a high clinical impact as regulatory trials are overcome.

Read More