+34 679 490 537info@nanbiosis.com

Posts Taged regenerative-medicine

SINO-SPAIN Biomedical and Pharmaceutical Conference with NANBIOSIS participation

Last 7 June 2018 took place in Zaragoza, the Sino-Spain Biomedical and Pharmaceutical Conference, as a result of years of cooperation with Chinese institutions, organizad by Zaragoza University  and Aragonese Foundation for Research & Development of Aragon Government (ARAID), to promote initiatives and foster bilateral collaboration in biomedical and pharmaceutical sectors between Spain and China.

The themes of the forum were:

  • Molecular engineering for biomedical products
  • Diagnoses &Design for new devices for medical uses
  • Tissue Engineering and regenerative medicine
  • Pharmacology and nanometerials for medical application
  • Advanced therapies for cancer research

 

Researcher of three units of NANBIOSIS partcipated in the Conference: from U13. Tissue & Scaffold Characterization Unit, Manuel Doblaré and Iñaki Ochoa who gave a talk on  “Organ On Chip: Applications for cancer research”, from  U9. Synthesis of Nanoparticles Unit, Jesús Santamaría, who spoke on “Research on nanomedicine at the Nanostructured films and particles” and from U27. High Performance Computing, Esther Pueyo, who spoke about “Patterns of cardiac aging: Mechanisms and relation to disease” and Laura Ordovas, as moderator.

 

 

 

Read More

NANBIOSIS U7 Scientific Director, J Samitier and his vision on technology as a source of eternal youth

Josep Samitier, Scientific Director of U7 of NANBIOSIS, Nanotechnology Unit, has been recently featured in an article in the Jornal “El Mundo”

Following the publication of the book “The Death of Death” by Jose Luis Cordeiro and David Wood, which says that by 2045 death will optional thanks to new technologies finding a way to cure aging, the article interviewed Josep Samitier, to have a more realistic point of view.

The book ‘Death of death’ assures that in 2045 die will be something optional thanks to the new technologies will find a way to cure aging based on success examples of regenerative medicine, stem cell treatments, therapies genetics, 3D printing of organs or bioengineering, that in approximately 30 years aging will be a curable disease, that young indefinite longevity will be achieved, or, in other words, the possibility of being young indefinitely and that death will be, defect, something optional.

José Luis Cordeiro, co-author of the book goes back to 1950 to remember that it was there when it was discovered that the problem of cancer is that it is biologically immortal. They are, in the same way, germ cells or some stem cells, present in all organisms. “What we did not have before is the technology we have today, which allows us to detect the genetics of these cells, when the body dies, the germ cells, the mother and the cancer die, because the food ends, but if they are isolated and they are kept in the right environment, these cells are kept alive permanently”. So, his proposal is to investigate what determines that these are immortal cells and try to imitate the process to find the way that this affect our aging until it stops.

Dr. Angel Raya, Principal Investigator of the CIBER-BBN in the Center of Regenerafiva medicine of Barcelona clarifies that “the diseases that affect us in relation with aging are diseases in which the symptom is produced by the failure of one of the parts of the system, the idea is that if we recover the function of that part in a functioning system, the patient will not have that disease, but that does not mean that he will have more life”.

According to Josep Samitier, “there are fundamental problems associated with aging, such as the loss of muscle mass, the loss of certain capacities …, the human being has cells that are born, develop, die and they are replaced by others, but as we gain years, the replacement stops occurring, understanding. Well this, that does not happen and is maintainance is much more complicated”. In short, the experts consulted affirm that the human body is not reduced to the parts or organs that make it up, and that fixing its mechanical failures will not result in lengthen life indefinitely. “A house made of billets can crumble, but the materials that constituted it, the iron and silicon atoms that form the sand and the iron beams will remain there even if the house disappears,” continues Samitier, “In the same way, we are made up of water, carbohydrates, fats …, the atoms of these substances endure and are quite immortal, but we have to think about the organization of this system, and what we see is that it is something difficult to maintain in a functional way for many years. Advances in bioengineering will help us to live longer and with better quality of life, we will solve some issues and we will have options to fix hearts after heart attacks and things like that, but the problem is not that one thing fails, it is that several fail”.

Article

Read More

NANBIOSIS ICTS invites groups and companies to discuss Smart Biomaterials and devices for Drug Delivery

On February 22nd, the National School of Health of the Carlos III Health Institute hosted the forum on Smart Biomaterials and biomedical devices for applications in drug delivery and regenerative medicine, organized by the ICTS Nanbiosis, an infrastructure shared by the CIBER-BBN and the Center of Minimally Invasive Surgery Jesus Usón (CCMIJU). This is the first groups/companies meeting organized by Nanbiosis, in which about 70 B2B meetings  were held.

The meeting brought together about 40 participants from 14 research groups (from the CIBER-BBN and the CCMIJU) and 10 companies, which discussed the latest advances in the research lines developed by the groups and platforms of Nanbiosis and on the needs and demands of the industry in smart biomaterials and devices for targeted drug delivery and regenerative medicine.

Jesus Izco, Coordinator of Nanbiosis, presented the new Cutting-Edge Biomedical Solutions“, soon available on the ICTS website. These are integrated solutions to advanced challenges in nanomedicine, biomaterials, medical device, and diagnostic that can be developed by several units under a  one-stop shop model, optimized with the experience and scientific and technical knowledge of the research groups of excellence that manage the involved units. Some of the Cutting-edge biomedical solutions presented in the meeting were preclinical validation of biomaterials, mechanical and surface characterization, biocompatibility and studies of biofilm formation and infections.

The CIBER-BBN prsentations were: “Instructive materials for regenerative medicine” by Miguel Ángel Mateos (NANBIOSIS U5 IP: Elisabeth Engel); “Molecular biomaterials for drug delivery and biomedical applications” byNathaly Veronica Segovia (NANBIOSIS U6 / IP Jaume Veciana and Nora Ventosa); “Advances with micro-nano technologies for in vitro devices and point of care” by Rosa Villa (NANBIOSIS U8 ); “Development of new dosage forms for advanced therapies based on new biomaterials” by José Luis Pedraz (NANBIOSIS U10); “Contact lenses functionalized for the prevention of corneal infections” by Jordi Esquena (NANBIOSIS U12 / IP Carlos Rodríguez); “Combined in-silico and in-vitro models of the cell microenvironment and drug delivery effects in cancer and tissue engineering applications” by Fany Peña (NANBIOSIS U13 / IP Miguel Á. Martínez); “Surface of the biomaterial: the first contact with our body” by  Marisa González (NANBIOSIS U16 ); “Use of biomaterials for the repair of soft tissue defects” by Bárbara Pérez Khöler (NANBIOSIS U17 / IP J M. Bellón and Gemma Pascual); “Controlled release systems based on mesoporous materials with molecular doors for applications in therapy and diagnosis” by Ramón Martínez Máñez (NANBIOSIS U26); “New intelligent devices and biomaterials for the treatment of pathologies of the retina and the nervous system” (Eduardo Fernández); and “Near-infrared responsive scaffolds for biomedical applications” (Nuria Vilaboa).

On the part of the CCMJU, the presentations were the following: “Application of Mesenchymal Stem Cells in preclinical models for surgical and cardiovascular research” by Javier García Casado (NANBIOSIS U14); “Regenerative medicine in animal models of cutaneous healing and diabetic models” by Beatriz Moreno (NANBIOSIS U19); “Preclinical studies of biomaterials” by Idoia Díaz-Güemes (NANBIOSIS U21 /IP: FM Sánchez Margallo); “Porcine model of myocardial infarction as a translational research platform in regenerative medicine” by Verónica Crisóstomo (NANBIOSIS U24).

In the turn of the companies, they presented some collaboration opportunities AJL, i-Vascular, Praxis Pharmaceutical, Technical Proteins Nanobiotechnology and REGEMAT 3D; and they also participated in the Rovi, Viscofan, Biomag and Biogelx Laboratories forum.

These meetings, where links are established between research groups and companies, address issues of business and scientific interest, allowing direct contacts between researchers and business managers.

Read More

Laura Lechuga in the fight against cancer

Dr. Laura Lechuga, Scientific Director of Unit 4 of NANBIOSIS is highlighted in Cinco Días. Elpais Economía  for its fight against cancer and, in particular, for the device developed with its team to detect the disease in matter of minutes

“Have you ever wondered why glucose meters are so smart that they just measure sugar? The answer is that they carry specific proteins that only interact with sugar, “explains the doctor.  The same idea lies in the device designed by Laura Lechuga and her research group “With a minimum sample of the patient, it is possible to detect the presence of different diseases depending on the protein located in the micro-receiver, in an economic and fast way”.

Due to these characteristics, this developed technology, has great potential for greatly improving health in underdeveloped countries, as well as in other fields like measure the presence of pollutants or toxic agents in the environment.

In the news published by Cinco Días. Elpais Economía other scientists in the fight against cancer are interviewed, as Angel Raya (from CIBER-BBN) about the regenerative medicine.

More information here

Read More

The Scientific Director and the Coordinator of NANBIOSIS, Jaume  Veciana and Jesús Izco, were invited by Professor Stefano Geuna (Professor of Human Anatomy at the Department of Clinical and Biological Sciences of the University of Torino) last 9th of March 2016 to present the CIBER-BBN, its scientific program and  its technologies to researchers of l’Università di Torino, in order to explore the possibilities of collaboration between the two institutions and promoting joint projects.

The meeting took place at the Molecular Biotechnology Center of the Molecular Biotechnology and Health Science department (www.mbc.unito.it/en ). The audience was made up of members representing six departments such as Department of Molecular Biotechnology and Health Sciences, Department of Neurosciences or the Department of Medical Sciences among others. After the presentations, up to ten face to face meetings were organized with research groups and staff of the Internalization Office from different departments to look for synergies and find out ways of collaboration. Topics such as nanoencapsulation for drug delivery, functionalization of biomaterials for regenerative medicine, especially for nerve regeneration or cell therapy for cancer were discussed and many common interests were detected. Following up the meeting, several actions were agreed and some of them have been already initiated to start new collaborations between both institutions.

L’Università di Torino is actively developing biotechnologies in the field of biomedical sciences, with specific focus on the study of the molecular mechanisms at the basis of physiopathological processes that have a great impact on human health, such as cardiovascular diseases, inflammation, stem cell biology and cancer. These researches are based on experimental work carried out by the biomedical departments of l’ Università di Torino.

Nanbiosis U6_Partnering opportunities with l’Università degli studi di Torino 9March2016
Read More