RHEOLOGY

Introduction

Rheology is the science that studies **flow** and **deformation** of materials under the effect of an applied force

Ideal solids *Deform* reversibly Ideal liquids *Deform* irreversibly

- The energy required for the deformation is fully recovered when the stresses are removed.
- They flow. The energy is dissipated in the form of heat.

Rheology applications

- > Quality control of polymers
- > Improvement of the processing behaviour
- Optimization of the end product

Geometries Parallel **Concentric** plates cylinders Very low to Low viscosity to medium viscosity soft solids

Cone and plate Very low to high

viscosity

Viscosity (η) is the "**resistance to flow**". η depends on shear rate.

Yield stress

Viscosity of different processes vs shear rate

Oscillatory measurements are used to measure the **viscoelastic properties** of a material. A stress or strain is applied and the corresponding response (strain or stress) is measured.

Complex Modulus G*

Storage Modulus G' (Elastic parameter)

Loss Modulus G" (Viscous parameter)

 $G^* = G' + iG''$ $G' = G^* \cos \delta$ $G'' = G^* \sin \delta$

• A **strain sweep** is used to measure the linear viscoelastic region (LVR).

From a strain sweep cohesive energy (CE) can be calculated to determine stability.

Gel point : represents the point where behaviour changes from viscous (liquidlike) to elastic (solid-like).

Creep and recovery

Creep: slow deformation of a material, usually measured under a constant stress. The creep test gives a measure of elastic, viscoelastic and viscous components.

The **compliance** is defined as the ratio of the strain to the applied stress (J).

The greater the compliance the more the

ιı

material can be strained under the application of

a certain shear stress.

(1) H.A. Barnes, J. F. Hutton, K. Walters F.R.S., An Introduction to Rheology, Elsevier, Amsterdam, 1993. (2) F. Chambon, J. Winter, J. Rheol. 3 (8), 683-697, 1987.

(3) www. tainstruments.com.

 t_2 time