+34 679 490 537info@nanbiosis.com

U1. Protein Production Platform Unit (PPP)

Ciber bbn

U1. Protein Production Platform (PPP)

U1. PPP logo IBB UAB
Order request

Description

The PPP Unit is at the Institute of Biotechnology and biomedicine of the Autonomous University of Barcelona (IBB-UAB) and counts with the necessary facilities for the design, production and purification of recombinant proteins. This facility is coordinated by the Nanobiotechnology Group, leaded by Prof. Antonio Villaverde. It has both highly specialized personnel and the necessary equipment to offer an “tailored” service for the design, production and purification of recombinant proteins using both prokaryotic and eukaryotic expression systems. Its location allows this service to be linked with other complementary services available within the university (Cell Culture, Cytometry, Production of Antibodies, Microscopy, Proteomic, and Bioinformatic,X-ray crystallography, and the Microarray and Sequencing Services), as well as facilitating the management of subsequent uses of the produced protein.

Counts with a laboratory perfectly equipped for the bioproduction of proteins, other with all the necessary equipment for the molecular cloning, plus one lab for the purification and characterization, and finally one for cryopreservation.

The PPP Unit is also applying for the ISO9001 certification forstandard quality control system.

IQNet ISO 9001:2015 Certification PPP

AENOR ISO 9001:2015 Certification PPP

Active projects

TitleFundin: OrganismCall: Funding source Role
GA: 720942SMART FUNCTIONAL GLA-NANOFORMULATION FOR FABRY DISEASE – Smart-4-FabryUnión Europea (Comisión Europea)H2020-NMBP-2016-2017Coordinator
SAF2017-90810-REDIStrategic Promotion and coordinated management of Nanbiosis: Pronanbiosis IIAgencia Estatal de Investigación (AEI)Acciones de dinamización «REDES DE EXCELENCIA» -ICTS 2017Coordinator

Other projects

RefTitleFunding OrganismUnit Role
PI15/00272Design of intelligent nanoconjugates for the treatment of metastatic colorectal cancer.Instituto de Salud Carlos IIIParticipant
BIO2013-41019-PENGINEERING OF PROTEIN NANOPARTICLES FOR THE DIRECT DELIVERY OF THERAPEUTIC PROTEINS AND NUCLEIC ACIDSMINECOParticipant
2014SGR-132Basic and Applied MicrobiologyAGAURParticipant
BIO2016-76063-RDEVELOPMENT OF NONOSTRUCTURED PROTEIN TOXINS AND POISONS FOR THE TREATMENT OF CXCR4 + CANCERESMINECOWorking package
RTC-2014-2207-1TERARMET: Development of therapies for the treatment of rare congenital metabolic diseasesMINECOParticipant
Marato 416/C/2030TV32013-132031Genotoxic nanoparticles targeting colorectal cancer stem cellsMarato TV3Participant

Publications

2016

  • Corchero J.L.. Eukaryotic aggresomes: from a model of conformational diseases to an emerging type of immobilized biocatalyzers. Applied Microbiology and Biotechnology. 2016;100(2):559-569.
  • Saccardo P., Corchero J.L., Ferrer-Miralles N.. Tools to cope with difficult-to-express proteins. Applied Microbiology and Biotechnology. 2016;:1-9.
  • Torrealba D., Seras-Franzoso J., Mamat U., Wilke K., Villaverde A., Roher N. et al. Complex particulate biomaterials as immunostimulant-delivery platforms. PLoS ONE. 2016;11(10)
  • Cano-Garrido O., Sanchez-Chardi A., Pares S., Giro I., Tatkiewicz W.I., Ferrer-Miralles N. et al. Functional protein-based nanomaterial produced in microorganisms recognized as safe: A new platform for biotechnology. Acta Biomaterialia. 2016;43:230-239.
  • Serna N., Cespedes M.V., Saccardo P., Xu Z., Unzueta U., Alamo P. et al. Rational engineering of single-chain polypeptides into protein-only, BBB-targeted nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine. 2016;12(5):1241-1251.
  • Rueda F., Gasser B., Sanchez-Chardi A., Roldan M., Villegas S., Puxbaum V. et al. Functional inclusion bodies produced in the yeast Pichia pastoris. Microbial Cell Factories. 2016;15(1)
  • Cabrera I., Abasolo I., Corchero J.L., Elizondo E., Gil P.R., Moreno E. et al. α-Galactosidase-A Loaded-Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration. Advanced Healthcare Materials. 2016;5(7):829-840.
  • Céspedes MV, Unzueta U, Álamo P, Gallardo A, Sala R, Casanova I et al. Cancer-specific uptake of a liganded protein nanocarrier targeting aggressive CXCR4+ colorectal cancer models.Nanomedicine : nanotechnology, biology, and medicine. 2016;12(7)
  • Giannotti M.I., Abasolo I., Oliva M., Andrade F., Garcia-Aranda N., Melgarejo M. et al. Highly Versatile Polyelectrolyte Complexes for Improving the Enzyme Replacement Therapy of Lysosomal Storage Disorders. ACS Applied Materials and Interfaces. 2016;8(39):25741-25752.

News U1

15 Nov

NANBIOSIS in the Posters presentation in CIBER-BBN ANNUAL CONFERENCE 2018

Last 12 and 13 of November, CIBER-BBN  has celebrated its 12th Annual Conference in Hotel Felipe IV in Valladolid. In poster session participated  NANBIOSIS  itself and some of its units. NANBIOSIS, Infrastructure for the Production & Characterization of Biomaterials, Nanomaterials and medical devices up to preclinical validation. Nanbiosis management team. Divalent cation effects on assembly of histidine-rich protein nanoparticles. López-Laguna, U. Unzueta, O. Conchillo-Solé, A. Sánchez-Chardi, M. Pesarrodona, O. Cano-Garrido, E. Voltà, L. Sánchez-García, N. Serna, P. Saccardo, R. Mangues, A. Villaverde, E. Vázquez (NBT-UAB) (U1 -U18) Antimicrobial peptides (AMPs) anchored on the surface of contact lenses to prevent corneal infections. Emiliano Salvagni, Clara García,[...]

06 Sep

A new pathway for the prevention of metastasis in colorectal cancer in humans is open: a nanomedicine that selectively eliminates metastatic stem cells

Researchers of NANBIOSIS U18  Nanotoxicology Unit and U1. Protein Production Platform (PPP) at the Biomedical Research Institute of Sant Pau (IIB Sant Pau), of the Hospital of Santa Creu i Sant Pau, of the Universitat Autònoma de Barcelona (UAB), the Superior Council of Scientific Research (CSIC) and the Center for Biomedical Research in Network (CIBER) have published an article in one of the most prestigious international scientific journals in the field of Molecular Medicine, EMBO Molecular Medicine. This article demonstrates the efficacy of the  nanopharmaceutical  that selectively removes metastatic stem cells in animal models of colon cancer. The new drug works like a[...]

27 Aug

Recombinant proteins production: optimization strategies.

On October 24th-26th, Aula Científica, in collaboration with IBB, organizes a theorical and practical course on “Recombinant proteins production: optimization strategies“. Some researchers of NANBIOSIS Unit1 Protein Production Platform (PPP), will transmit their knowhow and experience to the attendees, as José Luis Corchero, Rosa Mendoza Moreno and Neus Ferrer Miralles, Scientific Director of the Protein production planform of ICTS NANBIOSIS. The course is aimed at researchers and laboratory technicians from universities, hospitals, companies and research centers who are interested in the expression, production and purification of recombinant proteins with de objectives of analyze and design strategies for the improvement in the expression,[...]

06 Aug

How to optimize strategies to produce recombinant proteins?

Researchers of NANBIOSIS  U1. Protein Production Platform (PPP), organize a course on production of recombinant proteins together with  Aula Científica whose objective is to analyze and design strategies for the improvement in the expression, production and purification of recombinant proteins in heterologous systems. For  further information[...]

24 Jul

The general consul of France meets with NANBIOSIS researchers

The general consul of France in Barcelona, ​​Mr. Cyril Piquemal visited the IBB UAB facilities last July 18, to find out about the research that is being carried out and, in particular, explore possible collaborations in nano-pharmacy development projects. During the visit, the Consul of France in Barcelona was received by Màrius Martínez, Vice President of International Relations at the UAB; Maite Paramio, Deputy Vice President; Ivan Martínez, vice president of Research; Salvador Ventura, director of the Institute of Biotechnology and Biomedicine, and Antonio Villaverde, head of the IBB Nanotechnology Unit-NANBIOSIS  U1. Protein Production Platform (PPP) Next, the mayor visited[...]

22 Jul

Nanomedicine to fight against the spread of cancer

Nanoligent, S.L., the company stablished on March 2017 by professors Dr. A. Villaverde and Dra. E. Vázquez from NANBIOSIS Unit 1, professor Dr. M. Mangués from NANBIOSIS Unit 18, and entrepreneur Dr. M. Rodríguez is highlighted in la Vanguardia. More information here &nbs[...]

02 Jul

Selective CXCR4+ Cancer Cell Targeting and Potent Antineoplastic Effect by a Nanostructured Version of Recombinant Ricin

Researchers of NANBIOSIS Unit 1 and NANBIOSIS Unit 18, led by Prof Antoni Villaverde have published the article “Selective CXCR4+ Cancer Cell Targeting and Potent Antineoplastic Effect by a Nanostructured Version of Recombinant Ricin” at SMALL journal. Under the unmet need of efficient tumor‐targeting drugs for oncology, a recombinant version of the plant toxin ricin (the modular protein T22‐mRTA‐H6) is engineered to self‐assemble as protein‐only, CXCR4‐targeted nanoparticles. The soluble version of the construct self‐organizes as regular 11 nm planar entities that are highly cytotoxic in cultured CXCR4+ cancer cells upon short time exposure, with a determined IC50 in the nanomolar order of magnitude. T[...]

30 Jun

Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs

Scientists of NANBIOSIS  Units U1. Protein Production Platform (PPP),  and U18. Nanotoxicology Unit, have recently published an article titlled “Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs” in the Journal of  Controlled Release. Loading capacity and drug leakage from vehicles during circulation in blood is a major concern when developing nanoparticle-based cell-targeted cytotoxics. To circumvent this potential issue it would be convenient the engineering of drugs as self-delivered nanoscale entities, devoid of any heterologous carriers. In this context, we have here engineered potent protein toxins, namely segments of the diphtheria toxin and the Pseudomonas aeruginosa exotoxin as self-assembling, self-delivered therapeutic materials targeted to CXCR4+ cancer stem cells. The systemic administration of both nanostructured drugs in a[...]