+34 679 490 537info@nanbiosis.com

U6. Biomaterial Processing and Nanostructuring Unit

Ciber bbn

U6. Biomaterial Processing and Nanostructuring Unit

  • Scientific Coordinator: Dr. Nathaly Segovia nvsegovia@icmab.es
  • Entities: Instituto de Ciencia de Materiales de Barcelona ICMAB-CSIC
  • Address: Campus de UAB, 08193, Bellaterra, Barcelona, Spain
  • Phone: +34 935 801 853
  • Fax: +34 935 805 729
  • Web: ICMAB

ICMAB CSIC

Order request

Description

Located at the Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), in Barcelona, and under the coordination of Professor Jaume Veciana and Prof. Nora Ventosa, current directors of NANOMOL Group, which is a research group with wide expertise and recognized excellence in the synthesis, processing and study of molecular and polymeric materials with chemical, electronic, magnetic and biomedical properties.  It gathers several laboratories, perfectly equipped, to perform the mission of this facility: the development, characterization, and large-scale production of molecular biomaterials of therapeutic or biomedical interest, with controlled micro-, nano- and supramolecular structure. One example of Key-Enabling-Technology (KET) available in this unit is a simple one-step methodology, DELOS-SUSP, based on the use of compressed fluids (CF), such as CO2, to prepare particulate materials with precise and reproducible structural characteristics at micro-, nano- and supramolecular levels (size, shape, internal structural gradients, supra­molecular organization and crystalline purity). This example shows one of the singularities of this unit is that counts with CF–based plants at different scales, from mL to L, which allow process development by QbD and process scale-up.
 

U6. Services & Rates

News U6

09 Aug

Manuel Souto received UAB PhD Extraordinary Award

Jaume Veciana and Imma Ratera (NANBIOSIS U6 Biomaterial Processing and Nanostructuring Unit) have supervised Manuel Souto’s PhD thesis entitled “Multifunctional Materials based on TTF-PTM dyads: towards new Molecular Switches, Conductors and Rectifiers”. The School for Doctoral Studies, together with UAB Alumni, organises an event every semester for the award of PhD degrees and PhD special prizes. With 66 PhD programmes, the UAB is one of the leading Catalan universities in the production of theses and generates approximately a third of the doctoral theses that are defended in the Catalan university system each year. The PhD special prizes confer value to theses which have received the qualification of excellenc[...]

30 Jul

Artificial 3D Culture Systems for T Cell Expansion

Scientists of NANBIOSIS U6. Biomaterial Processing and Nanostructuring Unit, have recently pubished an article  in the ACS Omega  about the design 0f 3D platforms specific for T cell culture to improve the current T cell  expansion systems to introduce new in vitro models and facilitate the broad use of ACT in the clinics. Adoptive cell therapy, i.e., the extraction, manipulation, and administration of ex vivo generated autologous T cells to patients, is an emerging alternative to regular procedures in cancer treatment. Nevertheless, these personalized treatments require laborious and expensive laboratory procedures that should be alleviated to enable their incorporation into the clinics. With the objectiv[...]

07 Jul

Stimuli-Responsive Functionalization Strategies to Spatially and Temporally Control Surface Properties: Michael vs Diels–Alder Type Additions

NANBIOSIS Unit 6 Biomaterial Processing and Nanostructuring and Unit 3 Synthesis of Peptides collaborate in a research whose results are published by The Journal of Physical Chemistry B Stimuli-Responsive Functionalization Strategies to Spatially and Temporally Control Surface Properties: Michael vs Diels–Alder Type Additions Adriana R. Kyvik, Carlos Luque-Corredera, Daniel Pulido, Miriam Royo, Jaume Veciana, Judith Guasch, and Imma Ratera The Journal of Physical Chemistry B 2018 122 (16), 4481-4490 DOI: 10.1021/acs.jpcb.8b01652 Stimuli-responsive self-assembled monolayers (SAMs) are used to confer switchable physical, chemical, or biological properties to surfaces through the application of external stimuli. To obtain spatially and temporally tunable surfaces, we present microcontact printed SAMs of a hydroquinone molecule that are used[...]

05 Jul

Judith Guasch, (NANBIOSIS Unit 6) has been granted with a Ramon y Cajal grant from the Spanish Goverment

Judith Guasch holds a senior postdoctoral research position at the NANOMOL group CIBER-BBN at  ICMAB-CSIC that coordinates NANBIOSIS Unit 6 Biomaterial Processing and Nanostructuring Unit, after being awarded with a TecnioSpring fellowship  (Marie Curie Fellow, Cofund – Catalan Government and EU). Since 2017 she is also head of a Max Planck Partner Group (Dynamic Biomimetics for Cancer Immunotherapy) in collaboration with the Max Planck Institute for Medical Research (Heidelberg, Germany). Judith’s research interests are focused on the design, synthesis, and fabrication of multifunctional molecular and supramolecular materials for biomedical applications. Special interest is devoted to study the cell-material interaction for improving novel adoptive cell therapies for the treatment of cancer.[...]

22 Jun

NANOMEDICINE APPLICATIONS IN DRUG DELIVERY AND TARGETING: NANBIOSIS – NANOMED Industrial Forum

Yesterday took place in Barcelona, at Barcelona School of Management, Universitat Pompeu Fabra, a meeting of resarch groups and units of NANBIOSIS and CIBER-BBN and companies in the third B2B Forum organized by NANBIOSIS, in this case together with NANOMED SPAIN. Thirteen companies and twelve groups from CIBER-BBN and CCMIJU (ten of them coordinating NANBIOSIS units) got together to explain, through short presentations of ten minutes, those lines of their work aimed at finding synergies and potential collaborations in the area of Nanomedicine apllications in drug delivery and targeting. There was also a talk by a  representative of CDTI (Spanis[...]

12 Jun

New laboratory for unit 6 of NANBIOSIS

The equipment of NANBIOSIS U6-Processing of biomaterials and nanoestructuring, that at present are in several laboratories of the ICMAB-CSIC, are going to be transferred to their definitive location in the new laboratory of this NANBIOSIS unit. Given the large amount of equipment the process is expected to last two years, and itwill be done sequentially to continue to provide service to laboratory users. In this process, an engineer has been hired to play a key role, since he will not only be in charge of the transfer, but also to ensure the correct installation of equipment after its transfer and[...]

05 Jun

Agreements signed with MINECO for the allocation of FEDER funds for NANBIOSIS ICTS

In the framework of the FEDER Program in ICTS 2014-2020, several projects related to the ICTS NANBIOSIS have been selected by the MINECO for co-financing with FEDER funds of the European Regional Development Funds program. An agreement has been signed between MINECO and CIBER (partner of NANBIOSIS for the co-financing of the Project: “Purchase, installation and set-up of production and characterization equipment to complement the Units: U3-Synthesis of Peptides Unit, U18-Nanotoxicology and U20- In Vivo Experimental Platform”. The total budget of the project amounts to € 307,566.16, with 50% financing with FEDER Funds. Also CSIC (The State Agency Superior Council of[...]

22 May

Carbon-gold bonds for robusts molecule-electrode junctions

Marta Mas-Torrent, Jaume Veciana, and Nuria Crivillers, scientists of the research group NANOMOL, coordinating NANBIOSIS U6. Biomaterial Processing and Nanostructuring Unit, are co-authors of the article “Carbon-gold bonds for robusts molecule-electrode junctions” by  Journal of the American Chemical Society -JACS-. The researchers have studied the behaviour of an organic radical as a molecular wire formed by a covalent carbon-gold bond between the molecule and two electrodes. The molecule-metal junction is more stable and gemotrically better defined than its predecessors, in which other functional groups were used. This improvement opens up new horizons in the fabrication of novel electronic devices with applications[...]