+34 620 10 75 37info@nanbiosis.com

News U6

News U6

Reaching for the unreachable: New efforts to treat Lysosomal Storage Diseases

NANBIOSIS researchers pioneer novel treatments for Lysosomal Storage Diseases utilizing extracellular vesicles and liposomes, offering hope to patients.

1 March 2024, Vall d’Hebron Research Institute/ICMAB-CSIC (Barcelona)

Lysosomal Storage Diseases (LSDs) encompass a group of rare disorders caused by mutations in lysosomal proteins. These mutations can lead to dysfunctional proteins responsible for breaking down cellular materials, resulting in the accumulation of deposits. Such accumulations can manifest in various neurological symptoms, ranging from progressive neurodegeneration to severe cognitive impairment. Often emerging in childhood, LSDs tragically culminate in premature death for many patients.

Currently, up to 14 subtypes of LSDs can be treated using Enzyme Replacement Therapy (ERT). This therapy involves repeated intravenous administrations of non-mutated proteins to replace the dysfunctional protein that the patient naturally produces. However, this treatment modality is effective only for diseases caused by enzyme mutations. Moreover, intravenously administered enzymes often fail to reach the brain, leaving patients with neurological manifestations of LSDs untreated.

In response to this, the Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT) group at VHIR (in which the Unit 20 of NANBIOSIS is integrated) is playing a pivotal role in acknowledging this issue. Our researchers are pioneering the use of Extracellular Vesicles (EVs) to deliver functional lysosomal proteins to affected cells and organs. EVs, which are tiny particles naturally utilized by cells for intercellular communication, offer a promising avenue as drug delivery systems. The project, which will culminate this year 2024, aims to engineer EVs for enhanced protein delivery and selectivity. This potentially addresses LSDs with a neurological manifestation, and allows to more effectively reach key affected organs, like in the case of heart and kidneys in Fabry disease [1]. Moreover, this technique could also set the stage for treatments aiming to address LSDs caused by transporter deficiencies, another remaining challenge of these dreaded genetic conditions.

The results of this fruitful collaboration between Units 6 and 20 have derived in the generation of our “Enzyme-loaded Nanovesicles” service, one of the flagship Cutting-Edge Biomedical Solutions of NANBIOSIS.

The role of liposomes:

Additionally, the CB-DDT group is collaborating with the NANOMOL group at ICMAB, home of NANBIOSIS Unit 6. Thanks to this collaboration, the researchers managed to explore the use of liposomes, a type of synthetic nanoparticle, as a targeted therapeutic vehicle to enhance ERT effectiveness.

The results of this fruitful collaboration between Units 6 and 20 have derived in the generation of our “Enzyme-loaded Nanovesicles” service, one of the flagship Cutting-Edge Biomedical Solutions of NANBIOSIS. This allows our clients to precisely load enzymes into nanovesicles, which can be applied in targeted therapies for various disorders. This service includes direct applications in many rare diseases, but it can be expanded to any application that requires a well-defined nanovesicle. You can check more information about this Cutting-Edge Biomedical Solution here.

The ongoing research and multiple collaborations hold promise not only for improving current therapies but also for expanding treatment options for LSD patients. This could potentially offer hope where there was previously none. As the collaboration between VHIR and ICMAB continues to yield groundbreaking insights, the future of LSD treatment appears increasingly optimistic.

This article is in the context of Rare Disease Day 2024. To stay up to date, visit our news section here.

References:

[1] Seras-Franzoso J, Díaz-Riascos ZV, Corchero JL, González P, García-Aranda N, Mandaña M, Riera R, Boullosa A, Mancilla S, Grayston A, Moltó-Abad M, Garcia-Fruitós E, Mendoza R, Pintos-Morell G, Albertazzi L, Rosell A, Casas J, Villaverde A, Schwartz S Jr, Abasolo I. Extracellular vesicles from recombinant cell factories improve the activity and efficacy of enzymes defective in lysosomal storage disorders. J Extracell Vesicles. 2021 Mar;10(5):e12058. doi: 10.1002/jev2.12058. Epub 2021 Mar 12. PMID: 33738082; PMCID: PMC7953474.

Additional information:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our Cutting-Edge Biomedical Solutions, place your request here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

The NABIHEAL Project Pioneers Wound Healing with New Biomimetic Matrices

Nearly 40 scientists across 7 countries are pioneering this breakthrough in wound healing using a nobel and affordable bio-inspired, anti-bacterial matrix.

In addition to the vast consortium, the project also comprises 5 small and medium-sized enterprises (SMEs) and 9 academic institutions. These were convened last February at the University of Granada to share insights, progress, and strategies.

According to an article published by UGR at the beginning of this month, about 40 researchers involved in the project have attended a meeting to share results and progress.

The Horizon Europe project NABIHEAL, coordinated by the Biomedical Research Networking Center (CIBER) at the Institute of Materials Science in Barcelona (ICMAB, CSIC), has held a consortium meeting. The international consortium consists of 14 partners from 7 countries, including 5 small and medium-sized enterprises (SMEs) and 9 academic institutions. These partners have expertise in the development, evaluation, and commercialization of products for wound healing, nanotechnology, safety, and regulation.

Who are the NABIHEAL project partners?

There are three groups from CIBER-BBN participating within NABIHEAL: two groups correspond to Unit 6 and Unit 16 of NANBIOSIS. The former is the NANOMOL Group, and is lead by Nora Ventosa, the project coordinator of NABIHEAL. The later corresponds to our Surface Characterization Unit from UEx. The third CIBER-BBN group is the Photonics Engineering Group (GIF) from the University of Cantabria, with several of its leaders working at NABIHEAL.

In addition, researchers from the UGR’s Advanced Therapies: Differentiation, Regeneration, and Cancer group, as well as the Clinical and Translational Dermatology group, are participating as one of the partners in this consortium. Both belong to the ibs.GRANADA Biosanitary Research Institute and the UGR’s Modeling Nature: from nano to macro Excellence Unit.

Professor Juan Antonio Marchal Corrales leads the project at the UGR and is part of the project’s steering and executive committees. This project is developed at the Singular Laboratory of Biofabrication and 3D (bio)printing (BioFabi3D), located at the Biomedical Research Center (CIBM). In addition, UGR and ibs.GRANADA, in collaboration with the company Bioibérica, contribute their expertise in the biofabrication and 3D bio-printing of human skin models based on components of the matrix of each of the skin layers.

About the meeting at UGR:

The meeting, held on February 7th and 8th, was inaugurated by the project coordinator, Nora Ventosa, Scientific Director of Unit 6 of NANBIOSIS and researcher at a researcher at CIBER and ICMAB-CSIC, and by Enrique Herrera, the Vice-Rector for Research and Technology Transfer of the University of Granada.

The meeting was attended by 38 researchers from among the NABIHEAL partners. These included the Biomedical Research Networking Center (CIBER) at the Institute of Materials Science in Barcelona (ICMAB); the University of Extremadura and the University of Cantabria; the Spanish National Research Council (CSIC); Nanomol Technologies S.L. (NT); Bioiberica S.A.U (BIO); Histocell S.L (HCELL); Asphalion (ASPH); MyBiotech GmbH (MyB); Charité-Universitätsmedizin Berlin (CH) from Germany; the Institute for Medical Research and Occupational Health (IMI) from Croatia; the University of Aarhus (AU) from Denmark; the Technion-Israel Institute of Technology (IT) from Israel; BioNanoNet Forschungsgesellschaft mbH (BNN) from Austria, and the University of Maribor (UM) from Slovenia, as reported by the UGR.

About NABIHEAL project:

NABIHEAL, “Nanostructured Antimicrobial Biomaterials for Healing Complex Wounds,” is funded by the Horizon Europe Research and Innovation program. It has a total budget of nearly 5 million EUR for the next four years. The project addresses two unmet medical needs in the healing of complex wounds: firstly, affordable treatments for wound infections and prevention of complications during healing, and secondly, a strategy to optimize the composition and efficacy of drugs and dressings for wound healing.

Aim of the project:

Complex wounds affect the quality of life of more than 2% of the population in developed countries. Thus, it is a global health problem with a significant impact on healthcare economics. Moreover, complex wounds, including chronic wounds or major burns, are highly susceptible to microbial infection and biofilm formation, making them difficult to treat. In this regard, silver is a widely used metal in antimicrobial products for treating wound infections. However, silver-based products are expensive and have various drawbacks due to costs and environmental and safety concerns.

The NABIHEAL project will develop multifunctional biomaterials to address some of the unmet medical needs in wound management. This project will provide affordable treatments for wound infections or prevention of complications during all phases of wound healing.

In the short and medium term, NABIHEAL will develop —at least— two innovative multifunctional biomaterials for wound healing, using affordable manufacturing technologies based in the EU. In the long term, NABIHEAL could become an alternative to silver in wound dressing for wound healing.

You can read more about NABIHEAL project at the official webpage here.

Meeting of NABIHEAL project members at UGR in February 2024. Source: UGR.

Additional information

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This goes along with their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our biomedical Solutions, apply here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Technical seminar on materials characterisation equipment

The Service-SOFT/U6 Nanbiosis ICTS (of CIBER-BBN and ICMAB-CSIC) together with the company NANE are organising a technical seminar on materials characterisation equipment. In this seminar, different techniques for the characterisation of particulate materials such as DLS, NTA, Laser Diffraction, Morphology will be discussed.

Limited places. You can register at this link

Link to the program: here

Date: 08th of November

Place: Institute of Materials Science of Barcelona (ICMAB) -CSIC – Conference room

Read More

NABIHEAL project launches website

The website for NABIHEAL, an EU-funded Horizon Europe project developing biomaterials for complex wound healing, is now online.

The Horizon Europe project NABIHEALi project is coordinated by the Center for Biomedical Research Network (CIBER) at the Institute of Materials Science of Barcelona (ICMAB-CSIC).

This project will apply one the Cutting Edge Biomedical Solutions” of NANBIOSIS for the preparation of different nanoestructures with antimicrobial properties, required for the development of the final multifunctional wound healing biomaterials. This case will gather the expertise of two NANBIOSIS unit: NANBIOSIS U6 will produce and characterize these nanoestructures with antimicrobial properties, which will be tested in NANBIOSIS U16.

Find out more about the project and what its impact will be, and browse the 14 partners from 7 countries to see how each contributes to the project’s objectives. NABIHEAL WEBSITE

Related news: New European Project NABIHEAL in biomaterials for complex wound healing

Read More

A discovery in one of the most aggressive cancers will allow more efficient diagnosis

The extracellular vesicles secreted by triple-negative breast cancer stem cells are markers of lung metastasis, according to a study carried out by researchers at CIBER.

The work has been carried out by researchers from various CIBER-BBN groups (Bioengineering, Biomaterials and Nanomedicia), and CIBERONC (CIBER area focused on cancer) has participated in it. The research has been led by Joaquín Seras, from the Vall d’Hebron Research Institute (VHIR), a specialist in targeted drug therapies.

Physicochemical EVs characterization and all the in vivo studies were performed by NANBIOSISunits of CIBER, specifically NTA analysis was carried out at Unit 6 of Biomaterial Processing and Nanostructuring, led by Nora Ventosa at ICMB-CSIC and animal experimentation at Unit 20 “In vivo experimental platform”, led by Ibane Abasolo at VHIR.

The vesicle, in cell biology, is an organelle that forms a small, closed compartment, separated from the cytoplasm by a lipid bilayer just like the cell membrane. The vesicles store, transport or digest cellular products and waste. According to Joaquin Seras, leader of the research: “the identification of this subpopulation of cancerous extracellular vesicles, and their important role in the progression of the disease, will allow in the future to develop systems more effective and less invasive diagnostic methods based on their detection directly from blood samples”.

In different types of tumors, including triple negative breast cancer, it has been observed that the extracellular vesicles generated by tumor cells play an important role in the generation of pre-metastatic niches. Triple negative breast cancer, one of the most aggressive, highly plastic and heterogeneous, is characterized by a significant presence of malignant stem cells.

The study carried out by the Spanish researchers from CIBER with promising results, published in the “International Journal of Cancer”, shows, both in in vitro and in vivo models of the disease, that the vesicles actively contribute to the formation of areas with favorable conditions for the formation of metastases, thus favoring way, the spread of the disease.

Research contributions
In the opinion of Joaquin Seras, the great contribution of this work is that it “describes how the extracellular vesicles secreted by certain subpopulations of cancer cells, specifically those derived from cancer stem cells, have the potential to modify the microenvironment of the future metastatic niche to promote tumor growth.

In other words, continues the leader of the study: “the research sheds new information on the pathogenic mechanism of the disease, and suggests these extracellular vesicles as markers with diagnostic potential. It should be noted that these nanoparticles are secreted into the bloodstream by tumor cells, and effective capture and identification would allow them to be exploited as a diagnostic tool”.

On the characterization of extracellular vesicles of cancer cells
The complex composition and functional differentiation of cancer cells in a tumor also increases the heterogeneity of the subsets of vesicles secreted by cancer.

This phenomenon is particularly relevant in triple negative breast cancer, one of the most aggressive, highly plastic and heterogeneous cancers, characterized by a significant presence of malignant stem cells. However, until now the diversity of the vesicles secreted by cancer cells had not been studied, a diversity that is closely related, in turn and as the study shows, to cellular heterogeneity in triple-negative tumors.

The importance of the CIBER study lies at this point: the vesicles secreted by different tumor subpopulations and grouped by their degree of differentiation show fundamentally different activities in terms of their impact on cancer progression.

In the investigation, the extracellular vesicles secreted by up to three different types of neoplastic cells have been isolated and characterized, observing different bioburdens for each type, with the consequent differential effect on stromal cells. In addition, and as the study shows, cancer stem cell-derived vesicles contribute to converting healthy lung cells into receptive niches for the metastatic growth of cancerous breast cells.

Article reference:

González-Callejo P, Gener P, Díaz-Riascos ZV, Conti S, Cámara-Sánchez P, Riera R, Mancilla S, García-Gabilondo M, Peg V, Arango D, Rosell A, Labernadie A, Trepat X, Albertazzi L, Schwartz S Jr, Seras-Franzoso J, Abasolo I. Extracellular vesicles secreted by triple-negative breast cancer stem cells trigger premetastatic niche remodeling and metastatic growth in the lungs. Int J Cancer. 2023 Jan 27. doi: 10.1002/ijc.34447. Epub ahead of print. PMID: 36705298.

Read More

Nanoparticles to modulate topography and ligand distribution at the nanoscale: impact on cell behavior

Doctor Marc Martínez from the Nanomol-Bio group – NANBIOSIS U6 from CIBER-BBN at ICMAB-CSIC, defended his PhD thesis “Nanoparticles to modulate topography and ligand distribution at the nanoscale: impact on cell behavior” on 9 March 2023 at ICMAB.

he PhD thesis was supervised by Imma Ratera, Judith Guasch and Nora Ventosa from the Nanomol-Bio group at ICMAB-CSIC.

Ana Paula Candiota Silveira, Scientific Coordinator of NANBIOSIS U25 was part of the Committee that evaluated the Thesis tooghether with Jesús Martínez de la Fuente, Instituto de Nanociencia y Materiales de Aragón (INMA-CSIC) (President),  and Anna Lagunas Targarona, Institut de Bioenginyeria de Catalunya (IBEC) (Vocal).

As Marc Martínez explained in an inteview to ICMAB “I produce nanoparticles in the lab and I use them to see how cells react to them. I work at the interface between cells and materials. My research can be applied to cell culture, which can be relevant for the development of new therapies for the regeneration of organs or for building implants to replace missing organs and body parts”.

Doctor Marc Martínez’s PhD thesis was part of the PhD Programme in Biochemistry, Molecular Biology and Biomedicine from the Universitat Autònoma de Barcelona (UAB).

Further information at ICMAB webpage

Read More

Advancing a novel nano-pharmaceutical towards clinical translation

Prof Nora Ventosa, Scientific Director of NANBIOSIS U6 “Biomaterial Processing and Nanostructuring Unit” from CIBER-BBN and ICMAB-CSIC) is hosting the Lecture on nano-pharmaceuticals: “Advancing a novel nano-pharmaceutical towards clinical translation” by Elisabet González, from Nanomol-Bio Group of ICMAB-CSIC and CIBER-BBN

Monday, 13 February 2023
12 PM – 15 PM
ICMAB – Sala d’Actes Carles Miravitlles and ONLINE

Registration and futher information

Abstract: Nano-pharmaceuticals have the potential to drive the scientific and technological uplift, offering great clinical and socio-economic benefits to the society in general, industry and key stakeholders and patients. However, the translation of nano-pharmaceuticals from lab bench to an advanced stage of pharmaceutical development faces significant challenges: the high quality and quantity of these novel nanoformulations required for the preclinical (and further clinical) testing, the tight standards and regulations that must be complied with in this pharmaceutical field, and the increasing costs as development progresses, entails the major challenges, especially considering that the main players are usually research groups, spin-offs from academia or SMEs.

In this context, publicly funded research investment led by the European Commission within the framework of the Horizon Europe Programme is contributing to foster the transition from basic science to clinical practice. For example, by means of the EUH2020 Smart-4-Fabry Project (2017-2020), a novel nanomedicine for the Fabry disease treatment was developed up to an advance stage of preclinical development. For that, crucial considerations for early-stage product development were taken into account: these included identifying those critical quality attributes of the drug product essential for activity and safety, development and validation of advanced analytical methods (physical, chemical, biological) for characterization and quality control, identification and control of process parameters to ensure consistent batch-to-batch reproducibility, up-scaling manufacturing, and the use of adequate preclinical models.

Additionally, close collaboration with regulatory agencies from the early stages of development was carried to assure an aligned position and obtain a solid proof-of-concept. The outstanding efficacy results in preclinical models permitted to obtain an important milestone with strong implications for the translation of this new therapeutic product from bench to bedside: the Orphan Drug Designation by the European Medicines Agency (EMA). Currently, with the EU H2020 Phoenix Project (2021-2025), which aims to establish a Pharmaceutical Open Innovation Test Bed, together with the Project Innova4Fabry (2022-2023) from Innovators program (AGAUR), which aims to create a spin-off company, a smooth transfer of this novel therapy to clinical phase is pursued.

Dr. Elisabet González is senior researcher at the Nanomol-Bio group from ICMAB-CSIC and CIBER-BBN. She has extensive training in the field of Pharmaceutical Sciences. After the graduation of BSc in Pharmacy (2003), she held the MSc in Drug Research, Development and Control (2007), and the PhD in Pharmacy from the University of Barcelona (UB) (2011). Her 15+ years of scientific activity have been focused on the design of new type of nanoparticulate systems for technologically advanced applications in biomedicine (ocular and dermal inflammatory diseases, complex wounds, rare congenital metabolic diseases…).

Her pharmaceutical expertise has contributed to manage and coordinate multidisciplinary activities in the frame of national and international projects, which cover all key stages of the pharmaceutical development: from the design, manufacturing, characterization and quality control of nanoformulations to the preclinical and clinical development, and regulatory considerations. To highlight, she has played a key role in advancing the development of two effective nanoformulations from an experimental proof of concept (TRL3) to an advanced stage of preclinical development (TRL5), enabling with her first hand scientific-technical coordination the entrance of these nanoformulations to the regulatory preclinical phase.

Read More

New nanoarchitectonics of RGD peptide developed using quatsomes as robust tool in tissue engineering.

Researchers of three groups of CIBER-BBN at CSIC and IBEC, have created a versatile platform based on hierarchically nanostructured RGD peptide using quatsomes, with proved enhanced cell adhesion. These findings, which arose within the framework of the intramural project of CIBER-BBN “Molecular Biointerfaces for cell guidance” (DynaMo4Vasc), open new possibilities for tissue engineering.

The participation of two NANBIOSIS units were acknowledged in the publication of the research results: the synthesis of RGD derivatives were performed at NANBIOSIS U3 “Synthesis of peptides unit” of CIBER-BBN at IQAC−CSIC.  And the design and characterization of quatsomes were done at U6 of NANBIOSIS “Biomaterial Processing and Nanostructuring Unit” of CIBER-BBN at ICMAB-CSIC.

Tissue Engineering and cell adhesion

Tissue engineering pursues the development of functional and easy biological substitutes that allow restoring damaged organ or tissue or maintaining their normal function. The newer approach is the combination of appropriate cells and growth factors with a scaffold that supports the tissue or organ.

The scaffold is crucial since it must provide the conditions and the environment for the adequate cell regulation (adhesion, migration, proliferation, and differentiation), as well as the adequate delivery of bioactive factors (growth and adhesion), so that cells form the new tissue with its proper structure and function.

Cell adhesion (the interaction of the cells with its surroundings) is an important phenomenon for the development of appropriate scaffolds for tissue engineering, as it can ultimately determine cell fate. Thus, the study of the factors that govern cell adhesion and its optimization is essential.

The tripeptide Arg-Gly-Asp (RGD) is the most common peptide responsible for cell adhesion. Although the studies of its surface density and spacing at nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still unexplored.

Quatsomes

Quatsomes are non-liposomal nanovesicles which have been shown to be very homogeneous and stable in different media and which can be easily tuned with a wide range of chemical functionalities.

The Nanomol Group (from CIBER-BBN and ICMAB-CSIC) has been working during the last years with these nanoparticles showing their suitability for applications in nanomedicine, (as nanocarriers and nanocontainers to encapsulate drugs and protein cargoes, or as fluorescent dyes for therapy and diagnostics). This expertise led the researcher to explore the integration of quatsomes with relevant molecules and their use once anchored to a surface.

RGD Nanoarchitecnonics

Nanoarchitectonics is a novel concept that refers to multicomponent systems organized through the supramolecular union of nanometer structures where the main players are not the individual nanoparticles but their interactions, giving rise to new functionalities.

The team of researchers developed a versatile platform based on quatsomes as an effective nanoscopic building block to achieve hierarchical nanostructures of the RGD peptide which were further anchored to gold substrate. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic surfaces dramatically enhanced cell adhesion.

These findings open many possible pathways for the understanding of cell behaviour and improve the performance of clinical applications like implants and tissue engineering.

Article of reference:

Marc Martínez-Miguel, Miquel Castellote-Borrell, Mariana Köber, Adriana R. Kyvik, Judit Tomsen-Melero, Guillem Vargas-Nadal, Jose Muñoz, Daniel Pulido, Edgar Cristóbal-Lecina, Solène Passemard, Miriam Royo, Marta Mas-Torrent, Jaume Veciana, Marina I. Giannotti, Judith Guasch, Nora Ventosa, and Imma Ratera. “Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion” ACS Appl. Mater. Interfaces 2022, 14, 42, 48179–48193 Publication Date:October 17, 2022 https://doi.org/10.1021/acsami.2c10497

Read More

New European Project NABIHEAL in biomaterials for complex wound healing

The Horizon Europe project NABIHEAL, coordinated by the Center for Biomedical Research Network (CIBER) at the Institute of Materials Science of Barcelona (ICMAB-CSIC), was launched on 11-12 January 2023 in Barcelona with the first meeting of the international consortium, formed by 14 partners from 7 countries, including research centers, universities, and private companies. 

This project will apply one the Cutting Edge Biomedical Solutions” of NANBIOSIS for the preparation of different nanoestructures with antimicrobial properties, required for the development of the final multifunctional wound healing biomaterials. This case will gather the expertise of two NANBIOSIS unit: NANBIOSIS U6 will produce and characterize these nanoestructures with antimicrobial properties, which will be tested in NANBIOSIS U16.

NABIHEAL stands for “Antimicrobial Nanostructured Biomaterials for Complex Wound Healing” and is funded under the Horizon Europe Research and Innovation programme with a total budget of nearly 5 million euros over four years. NABIHEAL aims at solving two unmet medical needs in complex wound healing: on the one hand, affordable treatments for wound infections and prevention of complications during wound healing, and on the other, a strategy to optimize the composition and efficacy of wound dressings.

The kickoff meeting, held at the CSIC Researcher’s Residence in Barcelona, was opened by the project coordinator, Nora Ventosa, from CIBER and ICMAB-CSIC, and by institutional and political representatives, including Riccardo Rurali, Vice-Director of ICMAB-CSIC; Ramon Martínez Mañez, Scientific Director of CIBER-BBN; Jordi Aguasca, Director of Technological Transformation and Disruption Unit, ACCIÓ; and Xavier Aldeguer, General Director of Society of Knowledge, Transfer & Territory of the Catalan Government. The meeting provided the opportunity to interact in person with all the consortium partners and establish the first collaborative activities to ensure timely delivery of the project milestones.

Complex wound healing as a global health problem

The NABIHEAL project will advance on the synthesis of advanced nanostructured biomaterials as an alternative to the commonly used silver-based materials. “The project will work to produce multifunctional materials for the treatment of complex wound healing, which has become a global health problem. For example, in developed countries, it affects the quality of life of more than 2% of the total population,” affirms Nora Ventosa, coordinator of the project.

Complex wounds, such as chronic wounds, are highly susceptible to microbial infection and biofilm formation, and thus difficult to treat. The most common antimicrobial products to treat these infections are based on silver. However, they have several economic, environmental and safety drawbacks. The biomaterials developed within the NABIHEAL project will offer a safer, more sustainable and more cost-effective alternative.

The project aims to obtain innovative multifunctional wound healing biomaterials using affordable EU-based manufacturing technologies. In the long term, NABIHEAL could become a game-changing alternative to silver in wound healing dressings.

An International Consortium

The goals of the project will be tackled by an interdisciplinary consortium from 7 countries, combining expertise in different areas, such as synthesis and characterization of biomaterials, biocompatibility and safety, regulatory aspects and ethics, or wound healing product development and scale-up. “We are excited to launch this project, in which 8 academic institutions and 6 private companies will join forces to face the challenging problem of complex wound treatment,” adds Prof. Ventosa.  

In addition to the Center for Biomedical Research Network (CIBER) at the Institute of Materials Science of Barcelona (ICMAB), as coordinator, the international consortium is formed by the following centers and companies: from Spain, the Center for Biomedical Research Network (CIBER) at the University of Extremadura and the University of Cantabria, the Spanish National Research Council (CSIC), Nanomol Technologies S.L. (NT), Bioiberica S.A.U (BIO), Histocell S.L (HCELL), the University of Granada (UGR), and Asphalion (ASPH); from Germany, MyBiotech GmbH (MyB) and Charité-Universitätsmedizin Berlin (CH); from Croatia, the Institute for Medical Research and Occupational Health (IMI); from Denmark, the Aarhus University (AU); from Israel, the Technion-Israel Institute of Technology (IT); from Austria, BioNanoNet Forschungsgesellschaft mbH (BNN); and from Slovenia, the University of Maribor (UM).

More information:

Prof. Nora Ventosa, Project Coordinator, CIBER, ICMAB-CSIC ventosa@icmab.es

Caitlin Ahern, Communication, BioNanoNet caitlin.ahern@bnn.at

Read More

“Preparation and characterization of SOFT Materials” Technical Seminar

Amable Bernabé, Tecnical Coordinator of NANBIOSIS U6: Biomaterial Processing and Nanostructuring Unit of CIBER-BBN and ICMAB-CSIC is giving a seminar on Preparation and Characterization of SOFT Materials.

The seminar will tame place on Monday, 28 November 2020, at 12 PM at ICMAB in the Carles Miravitlles Seminar Hall,

I will make a brief explanation about the equipment for the characterisation of particulate materials, type of samples that can be analysed, reports, etc… I will also talk about the equipment for processing materials with C” -explains Amable Bernabé.

 Amable Bernabé joined the ICMAB-CSIC in 2004 as a research assistant working at the Spectroscopic Service. Two years after, in 2006, he was promoted to technical coordinator of the CIBER-BBN and ICMAB-CSIC research group Nanomol , and in 2008, he started as the technical manager of the Soft Materials characterization lab. Since 2009, he was appointed a permanent research technician at CSIC. Since the creation of the NANBIOSIS and its aproval as ICTS (Scientific and Tecnical Unique Infraestructure by the Spanish Government, Amable is the Tecnical Coordinator of the unit 6 of NANBIOSIS. His research interest is focused on the study and characterization of the physico-chemical properties of nanomaterials, particularly on particle size and shape, particle concentration, Z-Potential and stability studies.

Description of the SOFT Service: The SOFT Materials Service is scientific and technical service of the Institute of Materials Science of Barcelona (CSIC) and the Unit 6 of the ICTS-NANBIOSIS. The mission of this facility is the large-scale production and characterization of molecular biomaterials of therapeutic or biomedical interest, with controlled micro-, nano- and supramolecular structure. This unit is composed of the equipment and the experienced personnel to develop and apply efficient, robust and green technologies based on the use of supercritical fluids, such as compressed CO2

Read More