+34 679 490 537info@nanbiosis.com

U6. Biomaterial Processing and Nanostructuring Unit

Ciber bbn

U6. Biomaterial Processing and Nanostructuring Unit

 

 

 

    • Scientific Coordinator: Dr. Nathaly Segovia nvsegovia@icmab.es
    • Entities: Instituto de Ciencia de Materiales de Barcelona ICMAB-CSIC
    • Address: Campus de UAB, 08193, Bellaterra, Barcelona, Spain
    • Phone: +34 935 801 853
    • Fax: +34 935 805 729
    • Web: ICMAB

 

 

 

 

 

 

 

ICMAB CSIC
Order request

Description

 

Located at the Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), in Barcelona, and under the coordination of Professor Jaume Veciana and Prof. Nora Ventosa, current directors of NANOMOL Group, which is a research group with wide expertise and recognized excellence in the synthesis, processing and study of molecular and polymeric materials with chemical, electronic, magnetic and biomedical properties.  It gathers several laboratories, perfectly equipped, to perform the mission of this facility: the development, characterization, and large-scale production of molecular biomaterials of therapeutic or biomedical interest, with controlled micro-, nano- and supramolecular structure. One example of Key-Enabling-Technology (KET) available in this unit is a simple one-step methodology, DELOS-SUSP, based on the use of compressed fluids (CF), such as CO2, to prepare particulate materials with precise and reproducible structural characteristics at micro-, nano- and supramolecular levels (size, shape, internal structural gradients, supra­molecular organization and crystalline purity). This example shows one of the singularities of this unit is that counts with CF–based plants at different scales, from mL to L, which allow process development by QbD and process scale-up.

 

 
U6. Services & Rates

Active projects

TitleFundin: OrganismCall: Funding source Role
GA: 720942SMART FUNCTIONAL GLA-NANOFORMULATION FOR FABRY DISEASE – Smart-4-FabryUnión Europea (Comisión Europea)H2020-NMBP-2016-2017Coordinator
SAF2017-90810-REDIStrategic Promotion and coordinated management of Nanbiosis: Pronanbiosis IIAgencia Estatal de Investigación (AEI)Acciones de dinamización «REDES DE EXCELENCIA» -ICTS 2017Coordinator

Other projects

RefTitleFunding OrganismUnit Role
PI15/00272Design of intelligent nanoconjugates for the treatment of metastatic colorectal cancer.Instituto de Salud Carlos IIIParticipant
H2020-MSCA-ITN-2014-642196Integrated self-assembled SWITCHable systems and materials: towards responsive organic electronics - a multi-site innovative training action i-SwitchUnión Europea H2020Participant
2014 SGR 17Consolidation Research Group: Molecular Nanociènciai Materials Orgànics (NANOMOL)Generalitat de CatalunyaParticipant
CTQ2013-40480-RMolecular Bio- and Electro-active materials for the improvement of health and social well-being (Be-Well)MICINNParticipant
FP7-PEOPLE-2013-ITN nº 607721Nanochemistry of molecular materials for 2-photon functional applications. Nano2FunUnión EuropeaParticipant
MAT2013-50036-EXPCell Surface Vessel Engineering Using Dynamic Molecular Bioinfecting (DYNAMO)MINECOParticipant
RTC-2016-4567-1Nanocapsules containing active ingredients for the topical treatment of dermatological diseases (NANO4DERM)MINECOParticipant
RTC-2014-2183-SApplication of Quatsomes technology for the development of a new range of perfumed softeners with lower environmental impactMINECOParticipant
201260E080Self-assembly, Nanostructuring and Processing of Functional Organic Molecules and their ApplicationsMinisterio de Ciencia e InnovaciónParticipant
MAT2016-80826-RMolecular materials and supramolecular organizations for therapy, diagnosis and tissue engineering (MOTHER)MINECOParticipant
RTC-2014-2207-1TERARMET: Development of therapies for the treatment of rare congenital metabolic diseasesMINECOParticipant

Publications

2016

 

  • Munoz-Gomez J.L., Monteagudo E., Lloveras V., Parella T., Veciana J., Vidal-Gancedo J.. Optimized polarization build-up times in dissolution DNP-NMR using a benzyl amino derivative of BDPA. RSC Advances. 2016;6(32):27077-27082.
  • Cordoba A., Hierro-Oliva M., Pacha-Olivenza M.A., Fernandez-Calderon M.C., Perello J., Isern B. et al. Direct Covalent Grafting of Phytate to Titanium Surfaces through Ti-O-P Bonding Shows Bone Stimulating Surface Properties and Decreased Bacterial Adhesion. ACS Applied Materials and Interfaces. 2016;8(18):11326-11335.
  • Cabrera I., Abasolo I., Corchero J.L., Elizondo E., Gil P.R., Moreno E. et al. α-Galactosidase-A Loaded-Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration. Advanced Healthcare Materials. 2016;5(7):829-840.
  • Cano-Garrido O., Sanchez-Chardi A., Pares S., Giro I., Tatkiewicz W.I., Ferrer-Miralles N. et al. Functional protein-based nanomaterial produced in microorganisms recognized as safe: A new platform for biotechnology. Acta Biomaterialia. 2016;43:230-239.

News U6

16 Jan

New nanocarrier for bio-imaging and drug-delivery applications

Researchers of CIBER-BBN and NANBIOSIS-ICTS (U6 Biomaterial Processing and Nanostructuring Unit at ICMAB-CSIC and U18 Nanotoxicology Unit at  Hospital de la Santa Creu i Sant Pau have developed a new nanocarrier for bio-imaging and drug-delivery applications The new nanovesicle formulation is based on the quatsome architecture – which stands out due to the high colloidal stability and homogeneity in size – and has now been shown to be suitable for in vivo dosing. Quatsomes are new non-liposomal lipid-based nanovesicles that have been developed by Nanomol group in recent years, and have been shown to be highly homogeneous and stable in[...]

11 Jan

A step forward in the field of organic free radicals acting as chiral emitters

Researchers of NANBIOSIS U6. Biomaterial Processing and Nanostructuring Unit have just published the article titled “An enantiopure propeller ‐ like trityl ‐ brominated radical: Bringing together a high racemization barrier and an efficient circularly polarized luminescent magnetic emitter” in the scientific magazine Chemistry A European Journal. The urgent need to cope with the more and more specific requirements in electronic devices is nowadays behind the search for new multifunctional materials. In this work, a step forward has been done in the field of organic free radicals acting as chiral emitters. The recently developed brominated trityl derivative, namely TTBrM radical, shows[...]

30 Dec

A step forward for the design of multifunctional protein nanomaterials for cancer therapies

Researchers of NANBIOSIS Unit 1 and NANBIOSIS Unit 18, led by Prof Antoni Villaverde have published the article at the prestigious scintific magazine titled Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4+ colorectal cancer The researchers have shown that the combination of cell-penetrating and tumor cell-targeting peptides dramatically enhances precise tumor accumulation of protein-only nanoparticles intended for selective drug delivery, in mouse models of human colorectal cancer. This fact is a step forward for the rational design of multifunctional protein nanomaterials for improved cancer therapies. Protein production has been partially performed by the  ICTS NANBIOSIS U1, Protein Production Platform[...]

27 Dec

Why the poor biodistribution so far reached by tumor-targeted medicines?

Cell-selective targeting is expected to enhance effectiveness and minimize side effects of cytotoxic agents. Functionalization of drugs or drug nanoconjugates with specific cell ligands allows receptor-mediated selective cell delivery. However, it is unclear whether the incorporation of an efficient ligand into a drug vehicle is sufficient to ensure proper biodistribution upon systemic administration, and also at which extent biophysical properties of the vehicle may contribute to the accumulation in target tissues during active targeting. To approach this issue, structural robustness of self-assembling, protein-only nanoparticles targeted to the tumoral marker CXCR4 is compromised by reducing the number of histidine residues (from[...]

07 Nov

NANBIOSIS expertise on Nanoparticles Characterization by Amable Bernabé.

Amable Bernabé, Technical Coordinator of NANBIOSIS U6 Biomaterial Processing and Nanostructuring Unit has given a course from Monday, 7 October, to Wednesday, 9 October on “Characterization techniques for particulate materials”. The course has counted with 12 participants from different CSIC centers (including ICMAB, IBM-CNM, ICM, IQAC…) and has introduced the participants to different techniques to characterize nanoparticles and other particulate matter, including the basic fundamentals, sample preparation, practical examples and results interpretation.  It is the second time that Amable Bernabé, technician from the Sof tLab, has decided to offer this course to all the CSIC community, so they can learn new methods to characterize nanoparticles,[...]

06 Nov

NANBIOSIS Scientific Director, Jaume Veciana, coauthor of an article highlighted in Chemistry Views

Jaume Veciana, Scientific Director of NANBIOSIS is coauthor of an article chosen to be highlighted on the ChemistryViews newsletter: “Organic Free Radicals as Circularly Polarized Luminescence Emitters”, published in Angewandte Chemie International Edition, and is about the intrinsic chiral emission of enantiometric organic free radicals. The short news about the paper is entitled “Circulary Polarized Light from Organic Radicals” is available here.  Circularly polarized luminescence (CPL) can occur when a luminescent compound has a chiral structure. Organometallic structures are leading in CPL activity. However, purely organic CPL emitters are promising alternatives in several applications where low toxicity is important (i.e., bioimaging). Jaume Veciana (Institut de Ciéncia de Materials de Barcelona (ICMAB), Spain), Araceli G. Campaña (University of Granada, Spain)[...]

16 Oct

Biomarkers in semen to diagnose prostate cancer

Sara Larriba of the Human Molecular Genetics Group of Bellvitge Biomedical Research Institute (IDIBELL) has informed NANBIOSIS about a recent publication mentioning NANBIOSIS in the Acknowledgements for its participation in the results of their research. (The nanoparticle tracking analysis was performed by the ICTS NANBIOSIS U6 Biomaterial Processing and Nanostructuring Unit) The article has been published by the journal Scientific Reports of Nature Research. The prediction of PCa in the early stage of the disease is one of the most important objectives in male urology. A significant decrease in deaths due to PCa has been associated with the use of serum[...]

23 Aug

Targeting antitumoral proteins to breast cancer by local administration of functional inclusion bodies

Three units of NANBIOSIS have collaborated in obtaining the research results published in the article “Targeting Antitumoral Proteins to Breast Cancer by Local Administration of Functional Inclusion Bodies” published by Advanced Science Protein production and DLS have been partially performed by the Unit 1 of ICTS NANBIOSIS Protein Production Platform (PPP) and the Unit 6 NANBIOBIS Biomaterial Processing and Nanostructuring Unit. Biodistribution and immunohistochemistry assays were performed at NANBIOSIS U20 In Vivo Experimental Platform/FVPR Two structurally and functionally unrelated proteins, namely Omomyc and p31, are engineered as CD44‐targeted inclusion bodies produced in recombinant bacteria. In this unusual particulate form, both types[...]