+34 620 10 75 37info@nanbiosis.com

News U26

News U26

Ramón Martínez, Scientific Director of Unit 26 of NANBIOSIS Co-leads the development of nanodevices to detect the presence of cocaine

Researchers of the Universitat Politècnica de València (UPV), the Universitat Rovira i Virgili (URV) and CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) have developed new nanodevices to detect the presence of cocaine in saliva or in any another aqueous solution. Part of the characterization of the probe was carried out using NMR facilities from NANBIOSIS. The paper is published in the journal Scientific Reports, of the group Nature.

The development consists of a molecular gate designed with nanoporous alumina, an aluminum oxide prepared by electrochemical means with pores of micrometric diameter. “A molecular gate -explains Ramón Martínez-Máñez, scientific director of Unit 26 of NANBIOSIS- is a mechanism in which its state (open or closed) can be controlled at will by external stimuli, in this case the presence of cocaine. The main novelty with respect to other detection systems is the use of porous alumina plates that are easy to use and reusable for other sensors”.

This new intelligent nanodispositive lays the groundwork for the use of porous alumina in the development of molecular gates for the detection of chemical and biological compounds with applications in fields such as health and the environment.

Article of reference:
Nanbiosis U26 - ribes y martinez-manez development of nanodevices to detect the presence of cocaine
Read More

4 Units of NANBIOSIS hosted in three Universities among the 200 best in the world in science.

The University of Zaragoza is one of the 200 best universities in the world in science research, according to the latest Shanghai ranking of 2016 in a specific analysis by macro areas.

In order to elaborate this ranking by macroareas indicators such as the number of students and professors who have obtained the Nobel prize or Fields medal, the number of researchers highly cited in the scientific literature, the number of scientific articles indexed in the Science Citation Index and the Percentage of articles published in the most cited 20% scientific journals are used.

Only six Spanish universities are among the 200 best in the world in the field of science, such as the Autonomous University of Madrid, University of Barcelona, University of Santiago de Compostela, Polytechnic University of Valencia, University of Valencia and Zaragoza.

The list of the world’s top 200 universities in science is headed by American universities in Berkeley (California), Stanford, Princeton, Harvard, the Massachusetts Institute of Technology and California, which rank the top six. In the seventh one appears the first European university, Cambridge, followed by the one of Tokyo, Technological Institute of Switzerland and the University of Los Angeles.

NANBIOSIS contributes to this success through the elite researchers that coordinate three of its Units located in the University of Zaragoza: Unit 9 that offers services for sciences research as Synthesis of Nanoparticles biomedicine, micronanotechnology or microfluidics biomedicine, Unit 13 with services as tissue and biomaterial characterization or mechanical tests of tissues and Unit 27 which offers services for sciences research on biomedical computer simulation, modelling of biomedical systems or large simulation multicore and multiserver, among other aspects.

In addition, the Polytechnic University of Valencia and the University of Valencia provides the scientific management and part of the equipment to Unit 26 of NANBIOSIS that offers services for research as molecular imaging metabolomics by NMR or metabolic profiling of biofluids by NMR

Three Universities among the 200 best in the world in science, hosting 4 Units of NANBIOSIS.
Read More

A new system to detect Cocaine at very low concentrations

Ramon Martínez Máñez, Scientific Director of the Unit 26 of NANBIOSIS, together with researchers from his group and the group led by Professor Liz Marzal, both CIBER-BBN groups, have developed a new method to detect cocaine and Mycoplasma in very low concentrations.

The method involves the combined use of mesoporous silica nanoparticles, molecular equipped with doors, and spectroscopy SERS (Surface-Enhanced Raman Scattering) a signal amplification system that uses gold nanoparticles to detect very low concentrations of the substances tested. According to the tests that have been developed in the laboratory, in the case of cocaine it has allowed them to nanomolar levels of detection, and the Mycoplasma genomic DNA 30 copies/uL.

The detection system is based on the release of a dye easily identifiable spectroscopy SERS from inside silica nanoparticles, only when the species to be detected is present. “The pores of the nanoparticles are unblocked in the presence of cocaine and Mycoplasma or a dye that interacts with gold nanotriángulos is released, and is this interaction which is detected by SERS spectroscopy. The concentration of the substance to be detected is proportional to the detected signal”, says Ramon Martinez Máñez, Scientific Director of NANBIOSIS.

Article of reference:

Surface Enhanced Raman Scattering and Materials for Sensing Applications Gated: The Ultrasensitive Detection of Mycoplasma and Cocaine. Oroval, M., Coronado-Püchau, M. Langer, J. Sanz-Ortiz, MN Ribes, A. Aznar, E. Coll, C. Marcos, M.D. Sancenón, F. Liz-Marzan, L. M., Martinez-Máñez, R. Chemistry-A European Journal. DOI: 10.1002 / chem.201602457

A new system to detect Cocaine at very low concentrations
Read More

Research Excellence Award by the Spanish Royal Society of Chemistry to Ramón Martínez, Scientific Director of Unit 26 of NANBIOSIS

The Governing Board of the Spanish Royal Society of Chemistry (SRSQ) has agreed to grant its Research Excellence Award 2016 to Dr. Ramón Martínez Máñez, Scientific Director of Unit 26 of NANBIOSIS and Scientific Director of CIBER-BBN, in recognition of the quality and innovation of its research in the design of chrome-fluorogenic detection probes and the development of new delivery systems and their impact on biomedical applications.

Martinez Máñez is co-authored of more than 330 scientific publications in international journals. His scientific work has been cited on over 13,000 occasions. It is among the 15 most cited authors in the area of ​​Chemistry in Spain in recent years and currently has an index h of 56. He is currently Director of the Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) at the Politecnic University of Valencia. He has been coordinator of Project Evaluation Technology Area at the Generalitat Valenciana and member of the Committee of Experts for the Selection of Projects of the National Plan in 2010 and 2014 in the Thematic Area of ​​Materials. Currently, he is also coordinator of the PhD Program in Chemistry and a member of the Steering Committee of the Doctoral School of the UPV, Co-chairman of the magazine ChemistryOpen published by Wiley and member of the International Advisory Board of the Chemistry journal Asian. Chem. J. and ChemPlusChem, published by Wiley

 

Nanbiosis U26-Research Excellence Award by the Spanish Royal Society of Chemistry to Ramón Martínez, Scientific Director of Unit 26 of NANBIOSIS
Read More

Ramon Martinez Mañez, Scientific Director of Unit 26 of NANBIOSIS, has participated in the development of  new nanodevices that allow the controlled release of drugs, namely doxorubicin, for therapies against breast cancer.

So far, the work has focused on cellular assays, with positive results, that could open new ways to improve the effectiveness of some drugs used in the treatment of breast cancer.

The main novelty of these nanodevices is that the molecule covering the nanodevice not only controls when the transported drugs are released, but also controls where they are released to direct them to cells expressing TLR3, a protein of the innate immune system overexpressed in some cell lines of breast cancer. Through this protein it is also launched a death signal that ends with the tumor cell.

Their study was published last January in Chemistry-A European Journal:

Ultimo A, Giménez C, Bartovsky P, Aznar E, Sancenón F, Marcos MD, Amorós P, Bernardo AR, Martínez-Máñez R, Jiménez-Lara AM, Murguía JR.Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry. Chemistry – A European Journal. DOI: 10.1002/chem.201504629

Nanbiosis_U26_New nanodevices to improve therapy for breast cancer
Read More