+34 9340006100 -ext. 437807-info@nanbiosis.com

Preclinical validation bioimaging - Services

Preclinical validation bioimaging – Services

U26-S06. Biomedical and metabolomic imaging (On-site)

 

Description:

The service includes the housing of mice or rats to be able to carry out longitudinal studies, the administration, if applicable, of contrast agents, or radiopharmaceuticals for PET. Acquisition of both T1-weighted and T2-weighted images, as well as colocalized with the PET image. Volume measurement.

Applications

In addition to the typical studies in 3T preclinical imaging equipment, the possibility of varying the angle of the bed with respect to the horizontal makes it especially interesting for vascular and plant studies.

  • Qualitative and quantitative studies (relaxation times T1 and T2 and even making maps) at the brain level and other organs.Cardiological sequences: diffusion, determination of blood volume…
  • Anatomical and functional studies of different organs (for example: renal, abdominal, liver…).
  • Bone-level imaging, distinguish between bone material from soft tissue.
  • Fat suppression techniques.
  • Oncological studies to detect and locate tumors and volume calculation.
  • Carry out studies on fruits and vegetables (grapes, kiwi, tomato, seeds…).
  • Perform studies with/without contrast (Gadolinium) and see the differences between the 2 images.
  • Thanks to the possibility of rotating the equipment in a vertical position, images of plants can be obtained (because by their nature, they have to be in a vertical orientation, such as a stem). Ex-vivo studies can also be carried out vertically and in this way we maintain the integrity of the organ (eg heart).
Read More

U20-S015. Cytotoxicity: proliferation, LDH, apoptosis and ROS

Read More

U20-S014. Hemocompatibility: hemolysis, platelet aggregation, plasma coagulation times and complement activation

Read More

U20-S013. Detection of microbial (bacterial and mycoplasma) contaminationpre

Read More

U28-S021. Flow Citometry/Cell Sorter (Onsite&Remote)

Flow cytometry is a highly effective method for analyzing thousands cells or other particles in a matter of minutes. Flow cytometers detect the fluorescence, size and complexity of particles that pass through laser beams as a stream. In this way they can quickly generating statistically valid data by count very large numbers of particles – something that would be extremely difficult with traditional microscopy approaches. Flow cytometers are very well established in hospitals for routine diagnosis and now widely used for different types of research application from marine biology to stem cell research. A Cell Sorter is a specialized flow cytometer which is able to physically separate different classes of particles based on their fluorescence or other physical characteristics.

Applications:
>> Detection of rare events: the high throughput of Gallios allows for the statically-valid detection of very rare cellular events.
>> Multi-parameter assays: Three lasers and ten channels of Gallios allows the design of complex assays using multiple markers.
>> Cell cycle analysis: detection of DNA content, DNA damage, apoptosis and cell cycle antigens and many others.
>> Marine biology: flow cytometry is increasingly used as a tool to study marine microorganisms using their innate fluorescence properties combined with size and complexity characteristics.
>> Single cell separation: Mo-Flo is able to automatically sort single cells into individual wells of a 96-well plate with a very high degree of accuracy and is suitable for colony formation, stem cell isolation etc.
>> Cell purification from tissues: Mo-Flo allows individual cell types from complex tissues to be separated based on size, complexity or markers such as GFP. The yield and purity can be adjusted to suit different applications. Measurement of Relaxation Times (T1, T2, T1*)

Read More

U28-S020. High Content Screening (Onsite&Remote) OUTSTANDING

High content screening (HCS) attempts to bridge the gap between microscopy and cytometry, providing both large quantities of statically useful and phenotypically rich data. High content screening combines automated microscopy with customizable algorithms able to detect and quantify many different types of phenotypic information in both fixed and living cultured cells. Part of the Bionand Cell Culture Unit, the Perkin Elmer Operetta high content screening combines the quality of a spinning disc confocal microscope with Harmony HCS software, which contains many common algorithms such as nuclei and cells detection, as well as the ability to “learn” new phenotypes. Bionand will also offer access to the advanced server-based Columbus HCS software.

Applications:
>> Drug dose response curve calculation: On a single plate multiple concentrations or combinations of compounds can be easily and quickly tested. The software includes all the analysis and presentation tool required to calculate IC50 values. And display response curves
>> Small molecule screens based on changes in cell phenotype: Not all phenotypes can be detected easily by cytometry. Operetta allows very complex phenotypes (e.g. organelle distribution or cell organization changes) to be detected automatically and reliably.
>> Large scale siRNA screens: Automatic detections of up to 384 different siRNAs on a single plate and analysis them automatically makes it possible to perform genome-scale screens for phenotypes of interest
>> Long term cell culture studies: Operetta is equipped with temperature and CO2 control making it suitable for maintaining live cultured cells in optimal conditions during image acquisition

Read More

U28-S019. Fluorescence microscopy (Onsite&Remote)

For many applications conventional widefield fluorescence microscopy is still the best choice. The CCD detected used for conventional microscopy are often more sensitive that the photomultiplier tubes used in confocal microscopes and flow cytometers. As the camera capture the whole field of view at the same time – it also allows for faster imaging in many cases. Examples where conventional microscopy may be more appropriate include the visualization of individual molecules, receptors or small organisms such as bacteria and yeast. Total Internal Reflection Fluorescence (or TIRF) is a powerful technique which combines the sensitivity of conventional fluorescence without out of focus light. User have access to a dedicated conventional fluorescence system equipped for time-lapse microscopy and a laser-based multi-color TIRF system (also used as the basis for the N-STORM system)

Applications:
>> Endocytosis and vesicle dynamics: High contrast, speed and sensitivity makes it possible to follow live processes close to the membrane with TIRF
>> Single molecule studies: The advanced EM-CCD camera allows the fluorescence of individual molecules to be detected even with relatively short exposures
>> Actin cytoskeleton and focal contact dynamics in live cells: Using fluorescent protein markers these processes can be followed using high time-lapse imaging
>> Yeast and bacteria studies: It is often difficult to fluorescence from microorganism by confocal microscopy without bleaching, whereas the combination of a 100x 1.49NA objective and a very sensitive camera allows fluorescence to be de-tected without need high laser power or very low exposures.
>> High speed imaging of calcium dynamics

Read More

U28-S018. Super-resolution Microscopy (Onsite&Remote) OUTSTANDING

Fluorescence microscopy offers a wide array of tools for visualizing microscopic events. The intrinsic diffraction of light has historically made it difficult to use fluorescence to distinguish structures closer than 200nm apart. Super-resolution microscopy refers to techniques that selectively activate fluorescent molecules to map their position with up to 10 times more accuracy than conventional fluorescent microscopy. With the aim of promoting the use nanoscale imaging in biomedicine, Bionand has established one of Spain´s first N-STORM super-resolution platforms dedicated to practical applications. The Nikon N-Storm system is capable of localizing molecules with a resolution of up to 20nm.

Applications:
>> Structure determination of nanometric structures: e.g. nuclear pore receptors where individual subunits can be differentially labelled
>> High resolution neuron tracing: Super-resolution imaging has been shown to greatly improve the accuracy of neural maps given then many neural projects are below limit of conventional microscopy
>> Correlative microscopy: the higher resolution of super-resolution fluorescence makes it easier to associated with structures detected by electron microscopy
>> Single molecular studies: e.g. synapse neuroreceptor distribution
>> Nanoscale cytoskeletal and vesicle trafficking studies

Read More

U28-S017. Multiphoton Microscopy (Onsite&Remote) OUTSTANDING

Multi-photon (or two-photon microscopy) takes advantages of the near simultaneous absorption of two or more photons which act to excite a fluorescent molecule with the combined energy of both photons. In practice this means that low energy infrared light can be used to see fluorescent molecules that are normally excited by high energy ultraviolet and blue light. Using this method we can visualize fluorescent molecules at much greater depths than conventional microscopy. Infrared light is also much less damaging to live tissues than UV or blue excitation, making it ideal for visualizing model organisms or tissue explants. The Leica SP5 MP HyD combines both confocal and multi-photon modes in a single machine and can easily switch between different modalities. It is also fitted with the brand new, super-sensitive external HyD hybrid detectors dedicated for multi-photon microscopy.

Applications:
>> Deep tissue imaging: imaging thicker tissue sections (>100 microns) and complex models such as Zebrafish where GFP is used as a marker
>> Long term live imaging: where UV or Blue illumination would be toxic (IR light is much less damaging)
>> High resolution intravital imaging: Often used in near -surface tissues such as skin, retina and brain
>> Quantitative photoactivation: multiphoton-excitation only activates mole-cules in the focal plan unlike conventional fluorescence
>> Fluorescence properties of novel materials: For example nanoparticles often exhibit special absorbance and fluorescence properties when excited by two photon activation

Read More

U28-S016. Confocal Microscopy (Onsite&Remote) OUTSTANDING

Laser-scanning confocal microscopy is a very popular technique that uses a combination of laser illumination and a “pinhole” mask to ensure that only fluorescence from the focal plane reaches the detector. This avoids the characteristic blur typical of conventional fluorescence microscopy and allows images to captured as detailed optical slices and then used to build up rich 3D models. Confocal microscopy is one of the most versatile techniques available in a optical microscopy. The Advanced Fluorescence Service offers two extremely well specified Leica SP5 confocal microscopes. Their features include HyD hybrid detectors for the best possible sensitivity, as well as full environmental control for live cells and high-speed resonant scanning.

Applications:
>> High-speed live cell imaging: suitable for a wide range of samples including cultured cells and model organisms such as Drosophila Melanogaster
>> High quality imaging of fixed multi-color immunofluorescence preparations
>> Small to medium scale screening applications: useful where the highest possible imaging quality is required to detect a particular phenotype
>> Advanced fluorescence techniques: including FRAP for studying molecular dynamics, photoactivation, and FRET for studying molecular interactions at sub –nanometric distances

Read More