+34 9340006100 -ext. 437807-info@nanbiosis.com

ICTS

ICTS

NANBIOSIS receives the support of the Spanish Research Agency (Ministry of Science and Innovation) financing the NANBIO-ACCESS project, in the 2022 call for Excellence Research Networks.

Today has been published the Resolution of the Presidency of the State Research Agency of the Spanish Ministry for Science and Innovation granting fund for the selected projects in the 2022 call for “RESEARCH NETWORKS” within the framework of the State Program to Promote Scientific-Technical Research and its Transfer, of the State Research Plan Scientific, Technical and Innovation

The final resolution proposal was issued on June 21, 2023, once the hearing process has been completed and prior acceptance by the interested parties.

The two years lasting project 2021-2023RED2022-134685-I “NANBIO-ACCESS” was among the selected proposals.

The main goals pursued by the projects are:

1. Promote and consolidate the offer of the NANBIOSIS strategic services, which target advanced challenges in biomedical research: our Cutting-Edge Biomedical Solutions.

2. Promote the open and competitive access to NANBIOSIS services and, especially, to our strategic services.

3. Strengthen NANBIOSIS communication tools and enhance internationalization capabilities.

The proposed activities address the coordination within NANBIOSIS and the complementarity of the capacities of its units, optimizing its resources. Actions are especially proposed to promote the participation of NANBIOSIS nodes and units to the “Cutting-Edge Biomedical Solutions” program.

Read More

Resolution of the 2nd competitive call of 2023 for access to NANBIOSIS

NANBIOSIS is a Research Infrastructure for Biomedicine made up of the Platforms of the Center for Centro de Ivesntigación Biomedica en Red (CIBER- in the area of Bioengineering, Biomaterials, and Nanomedicine -CIBER-BBN), the Preclinical Infrastructure and the Development of Minimally Invasive Technologies, of the Jesús Usón Minimally Invasive Surgery Center (CCMIJU) and the Nanoimaging unit of the Biomedical Research Institute of Malaga-Nanomedicine Platform (IBIMA-BIONAND Platform).

NANBIOSIS as part of the Spanish Map of ICTS (an acronym for “Scientific and Technical Unique Infrastructures” in Spanish), approved by the Ministry of Science and Innovation, is open to all interested national and international users who may come either from the public or the private sector, and who can apply for access under the “Competitive Open Access” or “Access on Demand” modalities.

The 20% of the NANBIOSIS Units’ capacity is granted on the Competitive Open Access modality and will be prioritized according to scientific and technical quality and singularity of the applictions.

Consult the Resolution and details here

Related News:

Read More

2nd Open call 2023 for preferential access to the NANBIOSIS ICTS

NANBIOSIS opens in June the 2nd competitive open call 2023 for its “Cutting-Edge Biomedical Solutions” and services.

NANBIOSIS is a Research Infrastructure for Biomedicine made up of the Platforms of the Center for Centro de Ivesntigación Biomedica en Red (CIBER- in the area of Bioengineering, Biomaterials, and Nanomedicine -CIBER-BBN), the Preclinical Infrastructure and the Development of Minimally Invasive Technologies, of the Jesús Usón Minimally Invasive Surgery Center (CCMIJU) and the Nanoimaging unit of the Biomedical Research Institute of Malaga-Nanomedicine Platform (IBIMA-BIONAND Platform).

NANBIOSIS as part of the Spanish Map of ICTS (an acronym for “Scientific and Technical Unique Infrastructures” in Spanish), approved by the Ministry of Science and Innovation, is open to all interested national and international users who may come either from the public or the private sector, and who can apply for access under the “Competitive Open Access” or “Access on Demand” modalities.

The 20% of the NANBIOSIS Units’ capacity is granted on the Competitive Open Access modality and will be prioritized according to criteria of scientific and technical quality and singularity of the proposals.

There are 2 calls per year for open and competitive access that allow the prioritisation of the best service proposals. https://www.nanbiosis.es/call/

The 2nd call of 2023 will open on June 1 and applications can be submitted throughout the whole month (due date June 30th). Access application forms submitted after that date will be processed as “access on demand” applications.

Proposals granted in the open and competitive access modality must meet, at least, one of the circumstances listed in the access application form (“order request“), in order to demmonstrate their scientifc and technical quality or singularity.

Thus, for example, applications related to R&D projects funded through national or European calls are eligible, as well as the need to carry out one of the NANBIOSIS “Cutting-Edge Biomedical Solutions” that implies the interaction of several Units, among others.

NANBIOSIS Cutting-edge Biomedical Solutions

Related news:

1st Open call 2023 for preferential access to the ICTS NANBIOSIS

Read More

Resolution of the 1st competitive call of 2023 for access to NANBIOSIS

NANBIOSIS is a Research Infrastructure for Biomedicine made up of the Platforms of the Center for Centro de Ivesntigación Biomedica en Red (CIBER- in the area of Bioengineering, Biomaterials, and Nanomedicine -CIBER-BBN), the Preclinical Infrastructure and the Development of Minimally Invasive Technologies, of the Jesús Usón Minimally Invasive Surgery Center (CCMIJU) and the Nanoimaging unit of the Biomedical Research Institute of Malaga-Nanomedicine Platform (IBIMA-BIONAND Platform).

NANBIOSIS as part of the Spanish Map of ICTS (an acronym for “Scientific and Technical Unique Infrastructures” in Spanish), approved by the Ministry of Science and Innovation, is open to all interested national and international users who may come either from the public or the private sector, and who can apply for access under the “Competitive Open Access” or “Access on Demand” modalities.

The 20% of the NANBIOSIS Units’ capacity is granted on the Competitive Open Access modality and will be prioritized according to scientific and technical quality and singularity of the applictions.

Consult the Resolution and details here

Related News:

Read More

1st Open call 2023 for preferential access to the ICTS NANBIOSIS

NANBIOSIS opens in February the 1st competitive open call 2023 for its “Cutting-Edge Biomedical Solutions” and services.

NANBIOSIS is a Research Infrastructure for Biomedicine made up of the Platforms of the Center for Centro de Ivesntigación Biomedica en Red (CIBER- in the area of Bioengineering, Biomaterials, and Nanomedicine -CIBER-BBN), the Preclinical Infrastructure and the Development of Minimally Invasive Technologies, of the Jesús Usón Minimally Invasive Surgery Center (CCMIJU) and the Nanoimaging unit of the Biomedical Research Institute of Malaga-Nanomedicine Platform (IBIMA-BIONAND Platform).

NANBIOSIS as part of the Spanish Map of ICTS (an acronym for “Scientific and Technical Unique Infrastructures” in Spanish), approved by the Ministry of Science and Innovation, is open to all interested national and international users who may come either from the public or the private sector, and who can apply for access under the “Competitive Open Access” or “Access on Demand” modalities.

The 20% of the NANBIOSIS Units’ capacity will be granted on the Competitive Open Access modality and will be prioritized according to criteria of scientific and technical quality and singularity of the proposals.

There will be 2 calls per year for open and competitive access that will allow the prioritisation of the best service proposals. Here you have the details of the first call: https://www.nanbiosis.es/call/

The call will open on February 1 and applications can be submitted throughout the whole month (due date February 28th). Access application forms submitted after that date will be processed as “access on demand” applications.

Proposals granted in the open and competitive access modality must meet, at least, one of the circumstances listed in the access application form (“order request“), in order to demmonstrate their scientifc and technical quality or singularity.

Thus, for example, applications related to R&D projects funded through national or European calls are eligible, as well as the need to carry out one of the NANBIOSIS “Cutting-Edge Biomedical Solutions” that implies the interaction of several Units, among others.

NANBIOSIS Cutting-edge Biomedical Solutions
Read More

NANBIOSIS in the NEW BOOK of the Unique Science and Technology Infrastructures (ICTS)

We are pleased to inform that the new book of Unique Scientific and Technical Infrastructures (ICTS) has been published by the Spanish Ministery of Sciencie and Innovation with the collaborations of the ICTS. You can download it download it here.

The Spanish Map of Unique Science and Technology Infrastructures (ICTS, in Spanish) , goups biomedical technologies, cleanrooms, supercomputers, advanced lasers, telescopes, underground laboratories, synchrotrons, particle accelerators, biological reserves, solar, oceanic and hydraulic platforms, oceanographic research ships, and polar bases in Antarctica. A total of 29 ICTS, made up of 64 infraestructures, allow for ambitious research projects that attract first-rate talent and enhance the technological and innovative industry capacities.

As Diana Morant, Spanish Minister of Science and Innovation says in its prelude “The Unique Science and Technology Infrastructures (ICTS), are crucial for the current country project around science and innovation that we are building together: administrations, research and technology centers, companies and society. I encourage you to go through the pages of this book and discover avant-garde facilities that represent the excellent scientific and technological capabilities that exist today in Spain.

Read More

NANBIOSIS in the new poster of ICTS map published by Spanish Goverment.

ICTS underpins the Spanish reputation for research excellence.

In the picture: the new poster of the ICTS map in which NANBIOSIS facilities have been highlighed

The term Unique Scientific and Technical Infrastructure (ICTS) refers to facilities, resources, or services for the development of top-quality cutting-edge research, as well as the communication, exchange, and preservation of knowledge, the transfer of technology, and promotion of innovation. They are unique or exceptional in their fields, with a high cost of investment, maintenance, and operation, and are of a strategic importance that justifies their availability to all actors in the field of R&D&I. The ICTS share three fundamental characteristics; they are infrastructures with public ownership, unique and open to competitive access.

ICTS offer an opening capacity percentage of their essential services under ‘Competitive Open Access’ for the use by national and international public and private sector researchers, with the support of technical and administrative personnel of the ICTS. Infrastructures access is ruled by a public “Access Protocol” that describes the procedure and criteria for access to the infrastructure. The main features of ‘Competitive Open Access’ are that R + D + i quality of activities developed at the infrastructure should be proven and that requests for access should be prioritized on the basis of objective criteria.

The dissemination of ICTS and their capabilities is essential to provide Spanish and international researchers with access to a large base of quality services and facilities, a basic requirement for the development of excellent science.

The new posster pushised by the General Subdirectorate of Large
Scientific-Technical Facilities of the of the Sapanish Ministry of Science and Research Innovation helps to disseminate and understand the map of ICTS wich are located throughout the country

NANBIOSIS, is one of the five ICTS in the field of Health Sciences and Biotecnology

Read More

NANBIOSIS renews its accreditation as Singular Scientific and Technical Infrastructure (ICTS)

The Minister of Science and Innovation, Diana Morant, chaired the XI meeting of the Council for Scientific, Technological and Innovation Policy, in which the update of the Map of Singular Scientific and Technical Infrastructures, the ICTS Map for 2021-2024, was approved.

The ICTS are facilities dedicated to cutting-edge research of the highest quality, as well as to the transmission, exchange and preservation of knowledge, technology transfer and the promotion of innovation.

The map has 29 ICTS distributed among all the territories, includes NANBIOSIS, the Infraestructure for Production and Characterization of Nanomaterials, Biomaterials and Systems in Nanomedicine with its 26 units.

As a novelty, the update incorporates four new nodes or infrastructures associated with the ICTS. Specifically, the NASERTIC computing node in Navarra, the CIEMAT computing node in Extremadura and Madrid, and the Port d’Informació Científica data node in Catalonia are incorporated into the ICTS Red Española de Supercomputación, while the Center for Microanalysis of Materials is associated as a node to the new distributed Infrastructure of Applications Based on Accelerators. Likewise, Navarra incorporates an infrastructure to this map for the first time, an instrument that improves the management of ICTS and helps these organizations to access funding from the Ministry as well as regional and European funds, particularly the ERDF funds and the Recovery Funds and Resilience (MRR).

In this sense, the minister announced that the next call to strengthen the ICTS, scheduled for the first half of 2022, will allocate 38 million euros until 2025 to finance lines of investment associated with the construction, development, instrumentation, equipment and improvement of its scientific- techniques. The previous call, published in 2021, dedicated nearly 37 million euros to these infrastructures.

NANBIOSIS is one of the five ICTS in the area of health sciences and biotechnology. This thematic area has significantly increased its representation in the current ICTS Map. Under the concept of distributed ICTS, infrastructure networks have been established in the field of imaging, nanotechnology and omics sciences. In addition, the high biological safety laboratories are also reinforced, expanding the infrastructures of this type that offer their services.

Read More

Gold Nanoparticles Synthesized by NANBIOSIS U9 will destroy tumor cells without drugs

A CIBER-BBN team at the University of Zaragoza has developed intelligent shuttles (cell vesicles -exosomes-) to transfer nanoparticles to the interior of tumor cells and destroy them by means of heat and without drugs, following the “Trojan horse” strategy.

NANBIOSIS U9, “Synthesis of Nanoparticles Unit has developed the procedure to be able to internalize gold nanoparticles, with surface plasmon in the NIR electromagnetic range, inside extracellular vesicles derived from stem cells. The synthesis of the gold nanoparticles has been produced according to the synthesis procedures of UNIT 9 of the ICTS NANBIOSIS based on the galvanic substitution reaction in the liquid phase of Co atoms by Au+3 ions, generating a hollow structure whose geometry gives gold nanoparticles unique optical properties that allow the absorption of NIR light and its conversion into heat” , explain the researchers of NANBOSIS U9 Pilar Martín-Duque, Victor Sebastián and Jesús Santamaría.

They are gold nanoparticles belonging to what is known as “plasmonic nanoparticles” that have the ability to heat up when receiving near-infrared radiation, which penetrates the body. It is, therefore, a treatment without drugs, which uses the heat generated by the particles to cause cell death around them. These particles are taken to the tumor by exosomes, having been proved efectived in animal models.

“We have managed to reduce or eliminate tumors in mice without drugs, only with the heat generated by irradiating them with a laser. In other words, we inject the exosomes with the nanoparticles into the tail of the mouse and they alone “search” for the tumor, not only in conventional models but also in multinodular ones, similar to metastatic processes”, explains Pilar Martín Duque.

For futher information:

https://www.ciber-bbn.es/noticias/desarrollan-lanzaderas-inteligentes-para-destruir-celulas-tumorales-desde-su-interior-mediante-calor-y-sin-farmacos

Article of reference:

Transfer of photothermal nanoparticles using stem cell derived small extracellular vesicles for in vivo treatment of primary and multinodular tumors. María Sancho-Albero, Miguel Encinas-Giménez, Víctor Sebastián, Estela Pérez, Lluis Luján, Jesús Santamaría, Pilar Martín-Duque Journal of Extracellular Vesicles 2022 https://onlinelibrary.wiley.com/doi/full/10.1002/jev2.12193

Read More

Fabry Desease in the Rare Disease Day: A New Hope

WHY DO CELEBRATE TODAY THE INTERNATIONAL #RareDiseaseDay?

29 of February is a ‘rare’ date and February, a month with a ‘rare’ number of days, has become a month to raise awareness about rare diseases and their impact on patients’ lives.  Since 2008 thousands of events happen every year all around the world and around the last day of February with the aim of improving equity and reducing stigmatization for people who live with more than 6,000 rare diseases.

WHAT ARE RARE DISEASES

Rare diseases are pathologies or disorders that affect a small part of the population (less than 5 per 10,000 inhabitants) and generally have a genetic component. They are also known as orphan diseases.

Diseases present a series of particular symptoms, and it is very difficult to diagnose what their true cause is. These disorders or alterations that patients present must be evaluated by a specialist, depending on each case.

Today 5% of the world population suffer from them. This translated into numbers, corresponds to approximately 300 million affected.

A patient with a rare disease waits an average of 4 years to obtain a diagnosis, in 20% of cases it takes 10 or more years to achieve the proper diagnosis.

ORPHAN DRUGS

To combat this disease, patients need to be treated with so-called orphan drugs. They serve to prevent and treat pathology. Its composition is based on biotechnological compounds whose manufacture is very expensive and not profitable for companies. For this reason, cooperation of governments is needed as well as financial incentives to encourage pharmaceutical companies to develop and market medicines to make these treatments accessible to a greater number of people.

FABRY DISEASE

Fabry is one of the rare diseases that currently lack a definitive cure. Symptoms may include episodes of pain, especially in the hands and feet (acroparesthesias); small dark red spots on the skin called angiokeratomas; decreased secretion of sweat (hypohidrosis); opacity of the cornea (cataracts) and hearing loss. Internal organs such as the kidney, heart, or brain may be involved, resulting in progressive kidney damage, heart attacks, and strokes.

Fabry disease is a lysosomal storage disease arising from a deficiency of the enzyme α-galactosidase A (GLA). The enzyme deficiency results in an accumulation of glycolipids, which over time, leads to cardiovascular, cerebrovascular, and renal disease, ultimately leading to death in the fourth or fifth decade of life. Currently, lysosomal storage disorders are treated by enzyme replacement therapy (ERT) through the direct administration of the missing enzyme to the patients.

SMART 4 FABRY” EUROPEAN PROJECT

CIBER-BBN, through the researcher Nora Ventosa has coordinated the european project “Smart-4-Fabry” developed during 2017-2021, the proyect was undertaken by a consortium formed by ten partners, including private companies and public institutions in Europe and Israel, with a Horizon 2020 financial programme by the European Commission (H2020-NMBP-2016-2017; call for nanotechnologies, advanced materials, biotechnology and production; Proposal number: 720942-2).

In view of their advantages as drug delivery systems, liposomes are increasingly being researched and utilized in the pharmaceutical, food and cosmetic industries, but one of the main barriers to market is their scalability.

Depressurization of an Expanded Liquid Organic Solution into aqueous solution (DELOS-susp) is a compressed fluid-based method that allows the reproducible and scalable production of nanovesicular systems with remarkable physicochemical characteristics, in terms of homogeneity, morphology, and particle size. The objective of this work was to optimize and reach a suitable formulation for in vivo preclinical studies by implementing a Quality by Design (QbD) approach, a methodology recommended by the FDA and the EMA to develop robust drug manufacturing and control methods, to the preparation of α-galactosidase-loaded nanoliposomes (nanoGLA) for the treatment of Fabry disease.

Through a risk analysis and a Design of Experiments (DoE), researechers obtained the Design Space in which GLA concentration and lipid concentration were found as critical parameters for achieving a stable nanoformulation. This Design Space allowed the optimization of the process to produce a nanoformulation suitable for in vivo preclinical testing.

The new nanoformulation developed by Smart4Fabry for the treatment of Fabry disease achieved the ODD (Orphan Drug Designation) by the European Commission. The new nanomedicine is more effective and has a better biodistribution than the current treatments, based on enzyme replacement. The new nanomedicine is based on a nanovesicle that protects the enzyme and achieves a better cell internalisation, thus reducing the doses needed, the total cost and improving the quality of patients.

Four units of NANBIOSIS participated in the project:

– U1 Protein Production Platform (PPP) led by Neus Ferrer and Antony Villaverde at IBB-UAB for the production and purification in different expression systems for R&D purposes.

– U3 Synthesis of Peptides Unit led by Miriam Royo at IQAC-CSIC performed all the chemical process of the Smart-4-Fabry project, i.e. design and synthesis of peptides used as targeting ligands in the nanoliposome formulation.

– U6 Biomaterial Processing and Nanostructuring Unit led by Nora Ventosa at ICMAB-CSIC developed tasks related to the manufacture of the nanoliposome formulation of GLA enzyme and the physico-chemical characterization (this unit counts with plants at different scales, from mL to L, which allow process development by QbD and process scale-up, as well as instrumental techniques for assessment of particle size distribution, particle concentration, particle morphology and stability, and Z-potential) .

– U20 In Vivo Experimental Platform led by Ibane Abásolo at VHIR carried out the non-GLP preclinical assays of the project (in vivo efficacy, biodistribution and tolerance/toxicity assays).

PHOENIX: OPEN INNOVATION TEST BED

Researchers of CIBER-BBN and NANBIOSIS, led by Nora Ventosa, are currently participating in another european project, PHOENIX “Enabling Nano-pharmaceutical Innovative Products” in the framework of which this novel nanomedicine developed under the Smar4Fabry project and designed as Orphan Drug by the EMA, will be scaled-up and manufactured under GMP to enable its clinical testing.

Articles of reference:

Josep Merlo-Mas, Judit Tomsen-Melero, José-Luis Corchero, Elisabet González-Mira, Albert Font, Jannik N. Pedersen, Natalia García-Aranda, Edgar Cristóbal-Lecina, Marta Alcaina-Hernando, Rosa Mendoza, Elena Garcia-Fruitós, Teresa Lizarraga, Susanne Resch, Christa Schimpel, Andreas Falk, Daniel Pulido, Miriam Royo, Simó Schwartz, Ibane Abasolo, Jan Skov Pedersen, Dganit Danino, Andreu Soldevila, Jaume Veciana, Santi Sala, Nora Ventosa, Alba Córdoba, “Application of Quality by Design to the robust preparation of a liposomal GLA formulation by DELOS-susp method”, The Journal of Supercritical Fluids, Volume 173, 2021, 105204, https://doi.org/10.1016/j.supflu.2021.105204.

Judit Tomsen-Melero, Solène Passemard, Natalia García-Aranda, Zamira Vanessa Díaz-Riascos, Ramon González-Rioja, Jannik Nedergaard Pedersen, Jeppe Lyngsø, Josep Merlo-Mas, Edgar Cristóbal-Lecina, José Luis Corchero, Daniel Pulido, Patricia Cámara-Sánchez, Irina Portnaya, Inbal Ionita, Simó Schwartz, Jaume Veciana, Santi Sala, Miriam Royo, Alba Córdoba, Dganit Danino, Jan Skov Pedersen, Elisabet González-Mira, Ibane Abasolo, and Nora Ventosa. Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment, ACS Appl. Mater. Interfaces 2021, 13, 7, 7825–7838 ( https://doi.org/10.1021/acsami.0c16871).

Read More