+34 620 10 75 37info@nanbiosis.com

ICTS

ICTS

New equipment for calorimetry and surface characterization for NANBIOSIS U16

NANBIOSIS unit 16 Surface Characterization and Calorimetry Unit form CIBER-BBN and University of Extremadura offers the performance of tasks of physical-chemical characterization of surfaces using techniques such as ellipsometry, calorimetry, X-ray photoelectronic spectroscopy (XPS) and detection of secondary ions by means of mass spectrometry by time of flight (Tof-SIMS). Recently, new equipment acquired through the execution an investment of 1.3 million euros, cofinanced with FEDER funds, the Ministry of Economy and Competitiveness and Junta de Extremadura, Regional Ministry of Economy, Science and Digital Agency, througth the project FICTS1420-14-09. These equipments are a microdroplet and picodroplet contact angle goniometry system and an optical profilometry system.

Equipment acquired

PEAK AND MICRO DROP GONIOMETRY SYSTEM

This system allows to measure contact angles automatically, controlling by software, the deposition of drops of different liquids, their analysis and the orientation of the substrate, as well as pending drops. In addition, the microdroplet system has a tilting base that allows the samples to be tilted by at least 90o. It also includes a thermostatic chamber, for temperature changes of the sample with a range between 5 and 90 ºC, and a chamber for humidity control.

Obtaining surface tension, through contact angle measurements, is a factor to consider in technologies of biomedical interest such as implants and other materials that must be in contact with biological fluids. In these systems the contact angle is related to the wettability, the hydrophobicity of the surface and the adhesion capacity of substances such as proteins or other compounds on the surfaces.

In the case of pico-droplet measurements, the system allows to very precisely dose drops much smaller than in the previous case, which can be as low as 20 picoliters, as well as to analyze their shape to measure the contact angle. This fact solves the problem of measuring wettability in very small structures, such as capillaries, microchips, joints created in the union of two materials, etc.

PROFILOMETRY SYSTEM

The system allows the roughness of a multitude of surfaces to be measured by an optical method that does not make any changes to the sample. With the operating base of a confocal microscope commonly used in different fields of science, it allows to create high-resolution 3D images quickly and automatically, as well as obtaining color images thanks to the use of three LEDs: Red, Green and Blue. With the available objectives, it is possible to measure from more macroscopic samples such as screws used as dental implants to be able to observe bacterial colonies composed of bacteria the size of a micron. This will make it possible to measure the roughness of any sample covering the range of roughness between a magnifying glass, which gives a more macroscopic view, and the atomic force microscope capable of measuring nanometric roughness (10 ^ -9 m). In addition, this equipment also works as an interferometer that allows to measure the roughness with greater precision of mirror polished samples in a simple way, obtaining images of higher resolution than any confocal technique.

Read More

Funded beamtime for SMEs in Sincrotron Alba ICTS thanks to EU CALIPSOplus projec. – Dec. 17 explanatory Webinar Calipsoplus-TamaTA for SMEs

Untill 30 of June 2021, small and medium companies can ask for funded beamtime in different European light sources thanks to EU CALIPSOplus project

The European project CALIPSOplus brings together 19 partners offering access to 14 synchrotrons and 8 FELs in Europe and the Middle East. This pilot transnational access scheme allows SMEs to access the best light source for their particular needs, irrespective of whether or not it is the closest light source.

Leader: CELLS (ALBA Synchrotron) (Barcelona, Spain)

Webpage: https://www.albasynchrotron.es/en/industry/services

Email: industrialoffice@cells.es

On December 17, 2020 – 12:00 – 13:00 Sincrotrón ALBA -ICTS is running a Webinar that will explain to companies how SMEs can benefit from the Calipsoplus-TamaTA project to solve their characterization problems at the ALBA Synchrotron. Inscriptions are open here

NANBIOSIS and SYNCROTRON ALBA, both ICTS facilities established some collaborations in order to increase the scope of the biomedical solutions given to the health sector.

Read More

Two new equipment items at the U6 of Nanbiosis with cofinancing from FEDER funds

The U6 of NANBIOSIS (Biomaterial Processing and Nanostructuring Unit) has expanded its capabilities with 2 new equipment items for the characterization unit. Both equipment items will allow the characterization of some physico-chemical properties of different nanomaterials.

The Zetasizer ULTRA is used to measure the particle size of dispersed systems from sub-nanometer to several micrometers in diameter, using the technique of Dynamic Light Scattering (DLS). Zetasizer systems are also used to analyze particle mobility and charge (Zeta potential) using the technique of Electrophoretic Light Scattering (ELS), and the molecular weight of particles in solution using Static Light Scattering (SLS).

The Green laser module for the NanoSight NS300 equipment. The NS300 allows analysis of the size distribution and concentration of all types of nanoparticles from 0.01 – 1 µm in diameter. This new laser module will allow NTA to measure a range of fluorescent particles, avoiding interferences during the measurements due to sample (auto)fluorescence and absorption.  This is done by detecting the fluorescence signal, which is emitted naturally by particles or as a result of fluorescence labeling or tagging


This equipment have been confinanced by the European Regional Development Fund (ERDF) through the Plurirregional Operational Program of Spain (POPE)2014-2020

European Regional Development Fund
Read More

NANBIOSIS in the new poster of ICTS map published by Spanish Goverment.

ICTS underpins the Spanish reputation for research excellence.

In the picture: the new poster of the ICTS map in which NANBIOSIS facilities have been highlighed with a red square

The term Unique Scientific and Technical Infrastructure (ICTS) refers to facilities, resources, or services for the development of top-quality cutting-edge research, as well as the communication, exchange, and preservation of knowledge, the transfer of technology, and promotion of innovation. They are unique or exceptional in their fields, with a high cost of investment, maintenance, and operation, and are of a strategic importance that justifies their availability to all actors in the field of R&D&I. The ICTS share three fundamental characteristics; they are infrastructures with public ownership, unique and open to competitive access.

ICTS offer an opening capacity percentage of their essential services under ‘Competitive Open Access’ for the use by national and international public and private sector researchers, with the support of technical and administrative personnel of the ICTS. Infrastructures access is ruled by a public “Access Protocol” that describes the procedure and criteria for access to the infrastructure. The main features of ‘Competitive Open Access’ are that R + D + i quality of activities developed at the infrastructure should be proven and that requests for access should be prioritized on the basis of objective criteria.

The dissemination of ICTS and their capabilities is essential to provide Spanish and international researchers with access to a large base of quality services and facilities, a basic requirement for the development of excellent science.

The new posster pushised by the General Subdirectorate of Large
Scientific-Technical Facilities of the of the Sapanish Ministry of Science and Research Innovation helps to disseminate and understand the map of ICTS wich are located throughout the country

NANBIOSIS, is one of the five ICTS in the field of Health Sciences and Biotechnology

Further informations: MICINN

Read More

Third edition of the course on “Characterization techniques for Particulate Materials” with Amable Bernabé

The Soft Matrials Lab at ICMAB-CSIC, run by Amable Bernabé (NANBIOSIS U6 Biomaterial Processing and Nanostructuring Unit, hosted from Monday, 5 October, to Wednesday, 7 October a course on “Characterization techniques for particulate materials”.

The course was an introduction to different techniques to characterize nanoparticles and other particulate matter, including the basic fundamentals, sample preparation, practical examples and results interpretation. 

Due to the COVID-19 pandemic, the participants of the course were less than in previous years, and during the practical sessions the group was divided, so less people was at the same time inside the lab, and the safety measures could be kept. 

Theory:

  • Dynamic Light Scattering (DLS) with Zetasizer Nano ZS (Malvern Instruments)
    • Size distribution
    • Z Potential 
  • Nanoparticle Tracking Analysis (NTA) with Nanosight NS300 (Malvern Instruments)
    • Size distribution
    • Particle concentration
    • Fluorescence
  • Light Scattering (LS) with Mastersizer 2000 (Malvern Instruments)
    • Size distribution

Practice:

  • Sample analysis and practical cases of Dynamic Light Scattering with the Zetasizer Nano ZS (Malvern Instruments) equipment.
  • Samples analysis and practical cases of the Nanoparticle Tracking Analysis (NTA) technique with the Nanosight NS300 (Malvern Instruments) equipment.
  • Sample analysis and practical cases of the Light Scattering (LS) technique with the Mastersizer 2000 (Malvern Instruments) instrument.

Source of information ICMAB-CSIC

Read More

NANBIOSIS in the NEW BOOK of the UNIQUE SCIENTIFIC AND TECHNICAL INFRASTRUCTURES (ICTS)

We are pleased to inform that the new book of Unique Scientific and Technical Infrastructures (ICTS) has been published by the Spanish Ministery of Innovation, Science and Universities with the collaborations of the ICTS.

The Spanish Map of Unique Scientific and Technical Infrastructures (ICTS), goups biomedical technologies, cleanrooms, supercomputers, advanced lasers, telescopes, underground laboratories, synchrotrons, particle accelerators, biological reserves, solar, oceanic and hydraulic platforms, oceanographic research ships, and polar bases in Antarctica. A total of 29 ICTS, made up of 62 nodes, allow for ambitious research projects that attract first-rate talent and enhance the technological and innovative industry capacities.

“Through a one-stop system, NANBIOSIS provides comprehensive solutions that are tailored to the challenges thaat researchers face in biomedicine… its configuration means pioneering multidisciplinary studies can be conducted. Some examples are outlined below.”

NANBIOSIS ICTS

Among these examples, several results combining the expertise of several Units of NANBIOSIS: an original method to prepare smaller nanoparticles of polylactic-co-glycolic acid (PLGA) functionalised with cell-penetrating peptides (CPP), which penetrate the cell membrane and release controlled drug doses into the cells; an innovative medication administration system based on emerging bionanotechnology with protein nanoparticles that selectively deliver lead the therapeutic agent to the tumour cells or a bioactive surgical mesh, covered with adult stem cells, to reduce the inflammatory process associated with implanting this type of material that proved a beneficial effect on the biocompatibility in animal models.

As Pedro Duque, Spanish Minister of Innovation, Science and Universities says in its prelude “The Unique Scientific and Technical Infrastructures described in this book are crucial for Spain and its science, technology, and innovation. I encourage you to browse the pages of this book and discover the state-of-the-art infrastructures that represent the scientific and technological capacity that exists in Spain today. You won’t regret it

Read More

I ONLINE Course on Introduction to Quality Management in Laboratories in the Biosanitary Field

The Jesús Usón Minimally Invasive Surgery Center (JUMISC), organizes the 1st ONLINE Course on Introduction to Quality Management in Laboratories in the Biosanitary Field.

The course will count with the expertise Beatriz Moreno Lobato, Scientific Director of NANBIOSIS Unit 19 CLINICAL TEST LAB, among others.

The Course is directed to middle-level technicians: Auxiliary Care of Nursing and Pharmacy and Parapharmacy and also to higher degree technicians: Pathological and Cytodiagnostic Anatomy, Oral Hygiene, Image for Diagnosis and Nuclear Medicine, Clinical and Biomedical Laboratory, Dental Prosthetics, Dietary

The course has a capacity for forty attendees and registration is now open here:

The course program consists of:
Thematic Unit 1: Quality Management Systems (7.5h) (15h student dedication)

  • Historical justification and principles of quality management (1,5h) (J Sánchez)
  • Quality Assurance Systems (J Sánchez)
  • ISO 9001 (1,5h) (J Sánchez)
  • ISO 17025 Standard (1,5h) (J Sánchez)
  • BPL regulations (1,5h) (J Fco Guillén)
  • Quality Philosophy. New strategies (1,5h) (J Sánchez)

Thematic Unit 2: Quality in the field of the laboratory (8.5h) (17h student dedication)

  • Generalities and Management in a Clinical Analysis Laboratory (2h) (B Moreno)
  • Safety standards in laboratories (2h) (J Boat)
  • Quality in other laboratories in the biomedical field (4,5h) (N Hernández / J García / N Picado)

Thematic Unit 3: Analytical Quality (4h) (8h student dedication)

  • Definition of analytical quality. General aspects (B Moreno)
  • Analytical tests (B Moreno)
  • Management and conservation of samples. Analytical Interferences (B Moreno)
  • Validation of analytical methods (B Moreno)
  • Calibration and equipment management. Quality and PNT manuals (J Fco Guillén / B Moreno)

Thematic Unit 4: Introduction to GLP (4h) (8h student dedication)

  • Regulation and relationship with other standards (J Fco Guillén)
  • ISO 13485 and other related standards (J Fco Guillén)
  • Documentation and Quality Assurance (J Fco Guillén)
  • BPL applications (B Moreno)

Final exam and Satisfaction Survey (2h)

Read More

NANBIOSIS Scientific Director, Jaume Veciana, coauthor of an article highlighted in Chemistry Views

Jaume Veciana, Scientific Director of NANBIOSIS is coauthor of an article chosen to be highlighted on the ChemistryViews newsletter: “Organic Free Radicals as Circularly Polarized Luminescence Emitters”, published in Angewandte Chemie International Edition, and is about the intrinsic chiral emission of enantiometric organic free radicals.

The short news about the paper is entitled “Circulary Polarized Light from Organic Radicals” is available here

Circularly polarized luminescence (CPL) can occur when a luminescent compound has a chiral structure. Organometallic structures are leading in CPL activity. However, purely organic CPL emitters are promising alternatives in several applications where low toxicity is important
(i.e., bioimaging).

Jaume Veciana (Institut de Ciéncia de Materials de Barcelona (ICMAB), Spain), Araceli G. Campaña (University of Granada, Spain) and colleagues have found a new approach for the optimization of organic emitters with intrinsic chirality. In particular, tris(2,4,6-trichlorophenyl)methyl (TTM) and perchlorotriphenylmethyl (PTM) radicals, which both have a chiral propeller-like shape, were used. In addition to their chirality, these materials are magnetically active. They are also easy to modify in order to optimize their properties.

The team separated the two racemic compounds into their enantiomers using chiral stationary phase high-performance liquid chromatography (HPLC). The CPL spectra of the four resulting fractions (examples pictured) were recorded and the researchers found highly efficient chiral emission for both pairs of enantiomers. According to the researchers, this is the first time results about the intrinsic chiral emission from enantiomeric organic free radicals have been reported. The work might be a starting point for the development of improved chiral organic radical emitters.

Reference article:Organic Free Radicals as Circularly Polarized Luminescence Emitters
Paula Mayorga Burrezo, Vicente G. Jiménez, Davide Blasi, Imma Ratera, Araceli G. Campaña, Jaume Veciana,
Angew. Chem. Int. Ed.2019.
https://doi.org/10.1002/anie.201909398

Read More

Unit 16 of NANBIOSIS will expand its capabilities with cofinancing of FEDER funds

On October 25, the Monitoring Commission of the agreement signed on July 15 was established by the Ministry of Economy, Industry and Competitiveness and the University of Extremadura for the acquisition of new equipment that will expand the capabilities of Unit 16 of NANBIOSIS.

One of the 26 Units that constitute NANBIOSIS is Unit 16 “Unit of Surface Characterization and Calorimetry” of CIBER-BBN and the University of Extremadura. The application of this FEDER cofinancing will allow the expansion of the capabilities of this unit for the chemical, physicochemical, and topographic characterization of surfaces, improving the competences in mass spectrometry by time of flight of secondary ions (TOF-SIMS), photoelectron spectroscopy (XPS) and extending them to the profilometry goniometry and goniometry. The requested equipment will be located on the Badajoz campus of the University of Extremadura, where Unit 16 of NANBIOSIS is located.

The total budget of the project is € 1,380,000, 80% of which are co-financed with funds from the European Regional Development Fund (FEDER) corresponding to the Spanish Multi-Regional Operational Program 2014-2020, allocated to the General Secretariat for Coordination of Scientific Policy of the Ministry of Science, Innovation and Universities destined to finance projects and actions related to infrastructures included in the current ICTS Map. The remaining 20% ​​is contributed by the Junta de Extremadura.

Further information here

Read More

NANBIOSIS AT THE CIBER-BBN ANNUAL CONFERENCE 2019

On October 21 and 22, CIBER-BBN has celebrated its 13th Annual Conference  in Tarragona, with a session dedicated to NANBIOSIS on the afternoon of Monday 21. The Singular Technical Scientific Infrastructure (ICTS) for the production and characterization of biomaterials, nanomaterials and devices up to its preclinical validation for the production and characterization of biomaterials, nanomaterials and devices up to its preclinical validation is integrated by of the CIBER-BBN, the Minimally Invasive Surgery Center Jesus Usón and Bionand after its incorporation to the ICTS last year. NANBIOSIS, presented its annual activity.

The Session was chaired by its Scientific Director, Jaume Veciana who also gave an Annual Summary, after that, the new unit 29 of NANBIOSIS, the Oligonucleotide Synthesis Platform, was presented by its Scientific Director Ramon Eritja Casadellà, from CIBER-BBN and Catalan Institute of Advanced Chemistry- CSIC . Finally, the Infrastructure for OMICS technologies (OmicsTech ICTS): metabolomics for clinical and nutritional research, was presented by Xavier Domingo-Almenara, Centre for Omics Sciences, EURECAT- Rovira i Virgili University.

After the NANBIOSIS Session, was the NANBIOSIS Scientificic Advisory Board meeting.

Read More