+34 620 10 75 37info@nanbiosis.com

News U1

News U1

Release of targeted protein nanoparticles from functional bacterial amyloids: A death star-like approach

Sustained release of drug delivery systems (DDS) has the capacity to increase cancer treatment efficiency in terms of drug dosage reduction and subsequent decrease of deleterious side effects. In this regard, many biomaterials are being investigated but none offers morphometric and functional plasticity and versatility comparable to protein-based nanoparticles (pNPs). Researchers of NANBIOSIS units 1 and 18 are co-authors of an article  publish by Journal of Controlled Release in which it is described a new DDS by which pNPs are fabricated as bacterial inclusion bodies (IB), that can be easily isolated, subcutaneously injected and used as reservoirs for the sustained release of targeted pNPs. Our approach combines the high performance of pNP, regarding specific cell targeting and biodistribution with the IB supramolecular organization, stability and cost effectiveness. This renders a platform able to provide a sustained source of CXCR4-targeted pNPs that selectively accumulate in tumor cells in a CXCR4+ colorectal cancer xenograft model. In addition, the proposed system could be potentially adapted to any other protein construct offering a plethora of possible new therapeutic applications in nanomedicine.

In the study the researchers have generated novel smart biomaterials gathering most of the desirable features for implantable DDS, with cost effectiveness and simplicity in the biofabrication process. In this regard, single step fabricated IBs when injected subcutaneously rendered a long lasting release of targeted pNPs, able to enter to the blood stream and specifically target the tumor for as long as 10 days and they have described for the first time an approach for the fabrication of protein DDS based on protein deposition as IBs and their sustained release in form of fully functional targeted pNPs. This technology provides and stable source of targeted protein nanoparticles during long periods within the body with the action at distal points from the implantation site and pave the way for the appearance of new more efficient and less invasive treatments for a broad number of pathologies.

Protein production has been partially performed by the ICTS “NANBIOSIS”, more specifically by the U1. Protein Production Platform (PPP), whereas the in vivo biodistribution assays were performed in the NANBIOSIS U18. Nanotoxicology Unit,

For further information see https://sciencedirect.com/science/article/pii/S0168365918301780?via%3Dihub

Read More

Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides

Scientists of Units 1 and 18 of NANBIOSIS are coathors of the article  “Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides” published by Nanomedicine: Nanotechnology, Biology and Medicine

Arginine-rich protein motifs have been described as potent cell-penetrating peptides (CPPs) but also as rather specific ligands of the cell surface chemokine receptor CXCR4, involved in the infection by the human immunodeficiency virus (HIV).

Polyarginines are commonly used to functionalize nanoscale vehicles for gene therapy and drug delivery, aimed to enhance cell penetrability of the therapeutic cargo. However, under which conditions these peptides do act as either unspecific or specific ligands is unknown. The authors have here explored the cell penetrability of differently charged polyarginines in two alternative presentations, namely as unassembled fusion proteins or assembled in multimeric protein nanoparticles. By this, they have observed that arginine-rich peptides switch between receptor-mediated and receptor-independent mechanisms of cell penetration. The relative weight of these activities is determined by the electrostatic charge of the construct and the oligomerizationstatus of the nanoscale material, both regulatable by conventional protein engineering approaches

Protein production has been partially performed by the ICTS “NANBIOSIS”, more specifically by the U1. Protein Production Platform (PPP), whereas the in vivo biodistribution assays were performed in the NANBIOSIS U18. Nanotoxicology Unit,

Article of reference:

Marianna Teixeira de Pinho FavaroNaroa SernaLaura Sánchez-GarcíaRafael Cubarsi, Mónica Roldán, Alejandro Sánchez-Chardi, Ugutz Unzueta, Ramón ManguesNeus Ferrer-MirallesAdriano Rodrigues Azzoni, Esther Vázquez, Antonio VillaverdeSwitching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides Nanomedicine: Nanotechnology, Biology and Medicine Volume 14, Issue 6, August 2018, Pages 1777-1786 

 

 

Read More

Nanoligent obtains the first prize in the Tech Transfer Competition in the ONCO Emergence forum

Last June 21-22th, took place at the Fira Gran Via in Barcelona, the ONCO Emergence forum, a networking conference focused on setting up transnational collaboration projects in oncology by promoting interaction among research institutes, companies and medical facilities like hospitals.

In other to promote alliances and generate collaborative projects from hospitals and academia to other stakeholders, ONCO Emergence Forum Barcelona has created a  Tech Transfer Competition that features cherry-picked entrepreneurs, TTO or principal investigators developing new technology ready to be licensed or in development through a spin-off.  Selected participants presented their innovative projects in a 6-minute English pitch to an experienced panel of judges, being the prize €1,500, provided by Fundación Pública Andaluza Parque Tecnológico de la Salud de Granada. The competition target  are therapeutic, diagnostic, medtech and digital health projects in oncology within the framework of improving healthcare and medical assistance with a deep focus on an unmet medical/market/patient need, resolved through an innovative technology to create a product or service; project must be in TLR 2-4 with tested hypothesis and demonstrated proof-of-concept as well as safety in in vitro/animal model.

NANOLIGENTthe spin off created by the Directors of NANBIOSIS Units U1. Protein Production Platform (PPP), Antoni Villaverde and U18. Nanotoxicology Unit, Ramón Mangues, together with Esther Vázquez and Manuel Rodriguez, was awarded with the First Prize.

Nanoligent´s project is about antimetastatic medication for colorectal cancer and its business model is carrying out a first clinical trial which demonstrates the efficacy of the medication in humans and allows the company to sign a license agreement with a pharmaceutical company.

 

Read More

Nanoligent, the spin off created by the Directors of Units 1 and 18 of NANBIOSIS, awarded for the best company in Health Sciences given by the law firm RCD

NANOLIGENT is awarded for the best company in Health Sciences  Price given by the law firm RCD.

The XXIII Investment Forum of ACCIÓ 2018 was celebrated last June 20th  with the aim of connecting with the world of private investment.  ACCIÓ, Company Competitiveness Agency, had previously published a catalog of startups with the most potential startups in Catalonia, projects selected from more than 100 candidatures were presented for the 2018 Investment Forum of ACTION. The 50 companies in this catalog stand out due to their differential nature and innovative value, due to their social impact and the involvement of the entrepreneurial team. They are companies operating in key sectors for the economy of the future such as life and health sciences, ICT and other crucial cutting-edge technologies for industry 4.0 including 3D printing, IoT and virtual reality. The 21 finalists had the opportunity to present themselves to a large number of investors and venture capital funds during the Forum’s celebration, an audience of 600 people who voted the 9 best companies to participate in the final.  Nanoligent, S.L., the company stablished on March 2017 by professors Dr. A. Villaverde and Dra. E. Vázquez from NANBIOSIS Unit 1, professor Dr. M. Mangués from NANBIOSIS Unit 18, and entrepreneur Dr. M. Rodríguez won the award for the best company in Health Sciences given by the law firm RCD (Rousaud Costas Duran)

NANOLIGENT’s mission is to improve the lives of patients by designing new medications that selectively target the cells affected by disease. With this approach NANOLIGENT develops treatments that are more effective and have less adverse effects than classical drugs using state-of-the-art protein engineering and nanobiotechnology. Currently Nanoligent is working on antimetastatic medication for colorectal cancer and its business model is carrying out a first clinical trial which demonstrates the efficacy of the medication in humans and allows the company to sign a license agreement with a pharmaceutical company

Read More

NANOLIGENT, the first drug designed to eliminate metastases stem cells

NANBIOSIS researchers have developed a nanomedicine for the treatment of metastases by the selective elimination of tumor stem cells. It is a system based on nanoparticles that transport a chemotherapeutic drug and release it into cancer cells.

The research team, led by Esther Vázquez and Antonio Villaverde, Strategy Director of NANBIOSIS U1. Protein Production Platform (PPP), in the IBB-UAB, and Ramon Mangues, Scientific Director of NANBIOSIS U18. Nanotoxicology Unit, in the Sant Pau Hospital, have already created a prototype of the drug and have conducted in vivo trials in animal models of colorectal cancer. They have demonstrated their effectiveness, selective biodistribution and low toxicity.

To promote the development of the drug towards the clinic, the reserachers have created Nanoligent a start-up company, based in Barcelona, led by Manuel Rodríguez, a professional with experience in the field of investment and the creation and growth of biotech companies. The technology is patented in Europe and USA and has been licenced to Nanoligent

The therapy created by the researchers is aimed at blocking the development of metastasis, mainly of colorectal cancer, through new strategies aimed at certain cell types. It consists of a new drug administration system based on protein nanoparticles that selectively conduct the therapeutic agent in tumor cells. The drug acts only on cancer cells, because it is based on the specific interaction between a protein present in the nanoparticle and a cellular receptor (CXCR4), which is overexpressed in tumor cells. “This interaction is crucial, because it allows attacking only tumor cells and not healthy cells, thus avoiding secondary effects derived from classical chemotherapy,” emphasizes Antonio Villaverde.

The CXCR4 receptor is overexpressed in many types of tumors, so that “this technology can be directed to the treatment of different types of neoplasms in addition to colorectal cancer and derived metastases, such as lymphoma, leukemia or endometrial cancer, in animal models already available to the group of Sant Pau “, comments Ramon Mangues. In addition, nanoparticles are compatible with a huge variety of possible drugs and therefore they become highly versatile vehicles that can carry a wide range of therapeutic molecules.

“There is an urgent need for more effective and personalized treatments for cancer. The toxicity and the lack of efficacy of conventional drugs are pushing alternative experimental strategies directed and designed to achieve only defined cell types. Nanoparticles, thanks to their capacity for penetration, dissemination and functionality, offer a promising nanomedical landscape to create new drugs,” explains Esther Vázquez.

In this direction, the technology of Nanoligent opens a new door in anti-pelagic therapy, as it allows to design a treatment with greater cellular specificity than that of existing treatments, while offering greater biosecurity and biodegradability and lower toxicity,” he said. Antonio Villaverde points out.

Currently, there are no drugs in the market that selectively eliminate metastatic stem cells. Although Nanoligent technology is still under development, researchers say they have a lot of potential and consider that it could have a high clinical impact as regulatory trials are overcome.

Read More

Prof. A. Villaverde interviewed by CIBER-BBN Bulletin

Prof. Antoni Villaverde, Strategy Director of NANBIOSIS U1. Protein Production Platform (PPP), in an interview for the CIBER-BBN Bulletin, speaks about his research group, coordinanting NANBIOSIS u1 and the benefits of belonging to a research structure like CIBER.

“The PPP – explains Prof. Villaverde – was generated within the group, but is currently a platform that has been gaining its own entity and structure, and has received the ISO certification granted by AENOR. Neus Ferrer-Miralles is the Scientific Director and Paolo Saccardo the technical coordinator. The objective of the activity developed by the PPP is based on supporting CIBER groups in the production and purification of recombinant proteins within the field of nanomedicine. The fact that this service has emerged within a powerful research group allows the accumulated knowledge and experience to directly revert to the needs in this field within the area of ​​nanomedicine in our country. Therefore, with the aim of reaching society, in addition to the CIBER, we also provide service to public and private entities dedicated to research and pharmaceutical companies”.

According to Toni Villaverde “The incorporation of the group to the CIBER-BBN has represented a clear and deap positive impact on our activities, at a collaborative level, which has greatly enriched our scientific and methodological capabilities and which has allowed a multidisciplinary scientific activity, which otherwise It would not have been possible. Since the beginning of the CIBER, we have carried out punctual collaboration activities with various groups of CIBER, and we have generated more stable collaborative structures that allow scientific developments in the medium-long term. Among the latter, it is necessary to highlight the collaboration with the group of Dr. Mangues and  Dras. Isolda Casanova and Virtudes Céspedes,- coordinating NANBIOSIS U18.Nanotoxicology Unit, Profs. Veciana y Ventosa, coordinatinatin NANBIOSIS U6. Biomaterial Processing and Nanostructuring Unit, as well as of the group coordinated by Prof. Schwartz and Dr. Abasolo” –NANBIOSIS U20. In Vivo Experimental Platform-.

In this interview, Dr. Villaverde reviews the main research lines and projects that the research group at the Institute of Biotechnology and Biomedicine of the Autonomous University of Barcelona, coordinator of the NANBIOSIS U1.PPP, is currently developing (nanostructured protein materials as therapeutic anti-inflammatory agents, nano and protein microstructures for drug delivery in targeted therapies and new drugs for rare diseases, nanoconjugates based on self-assembling proteins for targeted cancer therapy, self-assembling and nanostructured protein drugs, produced in recombinant form and based on very potent toxins, for targeted molecular therapy of cancer… and much more…) .

For further information: click here

Read More

Fabry disease awareness month, April

The Fabry International Network (FIN) association established the month of April as the “month of Fabry” to raise awareness and educate about this disease, a rare, progressive and with multi-organ involvement pathology.

Fabry Disease is one of several dozen Lysosomal Storage Disorders that interfere with the body’s ability to break down specific fatty substances. It is a rare disease and because the rate of occurrence is less than 1 in 200,000, it is considered as one of the many “Orphan” diseases. It is more common in women, but it occurs with greater severity in men.

Fabry disease is a metabolic disease that is produced by a deficiency of the ysosomal enzyme Alpha galactosidase. It is transmitted on the X chromosome. Fabry affected patients are missing alpha-galactosidase A (alpha-gal A) which results in sugars and fatty acids (Gb3) accumulating in the cells throughout the body and impairs the function of several major organs including the kidneys and heart. In 2001, enzyme replacement therapy appeared when the alpha-galactosidase protein (alpha- and beta-agalsidase) was synthesized in the laboratory using genetic engineering techniques. This treatment is injected into patients every 15 days to replenish the deficit levels of this enzyme and stop the progression of the disease.

CIBER-BBN, partner of NANBIOSIS, leads the European project Smart4fabry funded by the Horizon 2020 program, which will be developed through a consortium formed by 14 partners from 5 different countries. The CIBER-BBN coordinates the project through the participation of four of its groups that coordinate four units of NANBIOSIS (U1.Protein Production Platform (PPP), U3. Synthesis of Peptides Unit, U6. Biomaterial Processing and Nanostructuring Unit and U20. In Vivo Experimental Platform.) In addition, the consortium is formed by the University of Aarhus (Denmark), Technion Israel Institute of Technology (Israel), Joanneum Research (Austria), Biopraxis Research AIE (Spain), the spin off Nanomol Technologies SL (Spain) ), BioNanoNet (Austria), Drug Development and Regulation SL (Spain), the Covance Laboratories LTD group (UK), and Leanbio SL (Spain) Smart-4-Fabry has been conceived and developed to obtain a new nanoformulation of GLA, that will improve the efficacy and toleration of the treatment with non-formulated GLA. The final benefit will be seen as a considerable reduction on the Fabry disease treatment cost and a substantial improvement in the life-quality of Fabry disease patients.

Fabry International Network, FIN was established in 2005, as a non-for-profit organization registered in The Netherlands. The primary aim of the project is to facilitate collaboration between patient organizations around the world to support those affected by Fabry disease

FIN is connected to over 45 countries around the world. Membership is free and open to any National Patient Organization in which Fabry patients are represented. The National Fabry Disease Foundation – USA, for April 2018 Fabry Disease Awareness Month, have been providing an educational or information post on their Facebook page, every day of the month in April. The NFDF also distributed their My Health Handbook kit  and, so far, distributed about 700 kits to individuals with Fabry disease. Fabry Australia have a new website and they are also running a new social media campaign. Fabry Support & Informatie Groep Nederland, FSIGN, since 2005  has organized every first Saturday of April (in the Fabry Awareness Month April) to be the Fabry women’s day. Japan Fabry Disease Patients and Family Association, in awareness month JFA held an open seminar at Fukuoka University Medical hall with lectures on three major topics: Newborn Mass Screening, Current Treatments and Employment and Clinical Genomics. In Spain the Fabry patient organization are the Spanish Fabry MPS Association

 

The Fabry International Network will cellebrate the 6th Fabry Expert Meeting on
8th – 10th June 2018 at the Vilnius Grand Resort, Ežeraičių g. 2, Ežeraičių km., Avižienių sen., Vilniaus raj., LT-14200, Lietuva.

DRAFT Full Program

 

Read More

Designing nanomedicines

Next May 3, will take place in Barcelona, at the Academy of Medical and Health Sciences of Catalonia and the Balearic Island, an informative session and debate about Nanotecnology and Health “Designing Nanomedicines” in wich Prof. Antonio Villaverde, Strategy Director of NANBIOSIS U1. Protein Production Platform (PPP) will give a talk on “Nanobiotechnological approaches to cancer medicine“. Prof. Jesús Martínez de la Fuente, (ICMAB-CSIC / Universidad de Zaragoza – CIBER-BBN) will speak about “the nanorevolution: towards a healthier world“.

The organization of the even has been in charge of Pilar Marco, Scientific Director of NANBIOSIS U2  Custom Antibody Service (CAbS), as a member of the board of directors of the Catalan Society of Medical Biotechnology.

Programe

Read More

Communication in science and transfer with Professor Antoni Villaverde

On June 6th, Aula Científica, in collaboration with IBB, organizes a theoretical and practical course on “Principles and practice of communication in science and in transfer“. Professor Antoni Villaverde, Strategy Director of NANBIOSIS U1. Protein Production Platform (PPP), will transmit his knowledge and experience on the preparation of scientific articles.

The objectives of the course, aimed at researchers, entrepreneurs, teachers and managers of research and transfer, are to offer basic conceptual and instrumental tools in scientific communication, focused on the writing of scientific manuscripts, preparation of scientific and technological innovation projects and transfer , and in oral and corporal expression during public presentations.

Dr A. Villaverde is Chair Professor of Microbiology at the Department of Genetics and Microbiology leader of the Nanobiotechnology group at the Institute for Biotechnology and Biomedicine and leader of the Basic and Applied Microbiology (SGR group), Autonomous University of Barcelona. He coordinates a research team of about 15 people, fully integrated in the Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). He has authored more than 250 peer-reviewed research and review papers on microbiology-biotechnology-nanosciences interfaces, apart from several books, book chapters and patents. A. Villaverde founded and ha has been Editor-in-Chief until 2017 of the Open-Access journal Microbial Cell Factories.

Information and registration: http://www.aulacientifica.com/Cursos/Varios/ComBCN.htm

 

Read More

“Smart-4-Fabry”: European project focused on the Fabry rare disease, participated by 4 units of NANBIOSIS

  • Smart-4-Fabry is a project coordinated by CIBER-BBN, funded by the European Commission within the Horizon 2020 Research and Innovation program with € 5.8 M for 4 years, which aims to develop a new nanomedicine for the treatment of the Fabry rare disease.

 

  • Fabry disease is a rare disease belonging to the group of lysosomal storage disorders, with a global incidence of 1:5,000 – 1:10,000, representing a priority health problem at European level.

 

The European project “Smart-4-Fabry”, is coordinated by CIBER-BBN, specifically by NANOMOL group at ICMAB-CSIC (Dr. Nora Ventosa) and the Biomaterial Processing and Nanostructuring Unit (U6) of  ICTS “NANBIOSIS”, and it also counts with the participation of NANBIOSIS Units U1 Protein Production Platform (PPP), U3 Synthesis of Peptides Unit, and U20 In vivo Experimental Platform.

Fabry disease is an inherited genetic disorder of the lysosomal storage group, which affects many organs and parts of the body, as it is caused by the accumulation of a lipid in the lysosomes of the cells, altering their functions and leading to cell death. This accumulation is due to the lack of an enzyme, α-Galactosidase A (GLA). The symptoms are many: limb pains, stains on the skin, problems with sweating, blurred frontal vision, gastrointestinal problems, loss of hearing, etc. In the long term it can cause renal failure, and heart and central nervous system problems.

Patients can lead a normal life with the current treatment called “enzyme replacement therapy”, where GLA is administered intravenously to patients. However, this treatment exhibits several drawbacks, related to a high instability, high immunogenicity or low efficacy of this molecule crossing cell walls. The development of a new treatment for this disease, as well as for other rare diseases, has become a priority challenge within the European program H2020.

Smart-4-Fabry, acronym for “Smart functional GLA-nanoformulation for Fabry disease”, was born with the idea of ​​obtaining a new nanoformulation of GLA that will improve the efficacy and tolerance of the existing treatments. The project will advance from experimental proof of concept, to the preclinical regulatory phase. The ultimate goal is to reduce the treatment cost and to improve the quality of life of patients with Fabry disease.

Smart-4-Fabry, involves the participation of fourteen partners from five different countries from academia and industry. The consortium is formed by: Network of Biomedical Research Centers: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) with the NANOMOL group at the Institute of Materials Science of Barcelona (ICMAB-CSIC), the Drug Delivery and Targeting Group at the Vall d’Hebron Research Institute (GDLF-VHIR), the Peptide Synthesis Unit at the Barcelona Science Park (UQC-PCB), and the Biotechnology and Biomedicine Institute of the Autonomous University of Barcelona (IBB-UAB) (Spain); Aarhus University (Denmark); Technion Israel Institute of Technology (Israel); Joanneum Research (Austria); Biopraxis Research AIE (Spain); the spin off Nanomol Technologies SL (Spain); BioNanoNet (Austria), Drug Development and Regulation SL (Spain), the Covance Laboratories LTD (UK) group; and Leanbio SL (Spain).

For further information: http://smart4fabry.eu/

 

 

Read More