+34 9340006100 -ext. 437807-info@nanbiosis.com

News U2

News U2

New look of Nb4D – CAbS (NANBIOSIS U2) “Revolutionising Diagnosis”

Nb4D has a new look on line! Nb4D Group (of IQAC-CSIC and CIBER-BBN) has lunched a new website “Revolutionsising Diagnosis with the aim to facilitate a faster and easier navigation througth their “pioneering research to develop new diagnostic and therapeutic approaches” and their solutions and expertise to help researchers and companies.

Antibodies, bioreceptors, hapten design and synthesis, immunoanalytical method development, new ivd tools, surface functionalization, therapeutic antibodies and much more knowledge and expertise revolutionising diagnosis.

The new website contains a page for CAbS-NANBIOSIS. Custom Antibody Service (CAbS), unit 2 of the ICTS NANBIOSIS

Read More

Rare diseases international day 2023: some NANBIOSIS contributions

Today is the international day of rare diseases, a day to raise awareness and instigate change for people living with a rare disease. From NANBIOSIS we want to sume to this celebration and higtligh our commitment to helping people with rare diseases through research.

Dr. Ibane Abasolo, Scientific Director of NANBIOSIS U20, was at the WORLDSymposia conference last week in Orlando (FL, USA), where the latest advances in preclinical study and clinic of lysosomal storage diseases were explained. There, she presented the results obtained in the Smart4Fabry project coordinated by the CIBER-BBN where nanoliposomes were developed for the treatment of Fabry disease. The work, entitled “Preclinical Validation of Nanoliposomes for ERT for Fabry disease”, was a result of the collaboration of the groups of Dr. Ventosa and Dr. Corchero, both from CIBER-BBN, and the participation of units U1, U3, U6, and U20 of the ICTS Nanbiosis.

In addition, today Dr. Abasolo participated in the Nano Rare Day session, organized by the NanoMedSpain platform and the Barcelona Bioengineering Institute (IBEC) at the Sant Joan de Deu Hospital in Barcelona, presented the work entitled “Use of natural and artificial nanoparticles for the treatment of lysosomal storage diseases”, where in addition to nanoliposomes, she also detailed how extracellular vesicles can be a good vehicle to improve replacement enzyme therapy in lysosomal diseases.

Also Dr. Juan Pablo Salvador from NANBIOSIS U2 CAbS has presented at in the Nano Rare Day session his talk on “Quorum Sensing to improve the management of cysticfibrosis“, explaining the difficulty of quickly identifying bacterial infections, which are common in patients with Cystic Fibrosis. In this sense, “Quorum Sensing”, a microbial communication mechanism through which the cells themselves regulate the expression of genes based on cell density, can help identify biomarkers and improve the management of cystic fibrosis.

Related news: Fabry Desease in the Rare Disease Day: A New Hope

Read More

New method for the detection of RNA viruses such as SARS-CoV-2

Several CIBER-BBN groups at the University of Barcelona, the Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), the Institute of Microelectronics of Barcelona (IMB-CNM-CSIC) and the Institute of Nanoscience and Materials of Aragon (INMA) —a joint institute of the CSIC and the University of Zaragoza (UNIZAR)— have developed a new method for detecting RNA viruses based on the technology of using probes that form triplex structures. This innovative methodology opens up new options to detect viruses such as SARS-CoV-2, the influenza A (H1N1) virus or the respiratory syncytial virus (RSV), a pathogen that affects newborns and requires differential diagnostic care.

This interdisciplinary work, published in the International Journal of Molecular Sciences, is led by Carlos J. Ciudad and Verónica Noé, from the Faculty of Pharmacy and Food Sciences and the Institute of Nanoscience and Nanotechnology (IN2UB) of the University of Barcelona ; Ramón Eritja, Anna Aviñó, Lluïsa Vilaplana and M.Pilar Marco, from IQAC-CSIC and CIBER-BBN; Manuel Gutiérrez, Antoni Baldi and César Fernández, from the IMB-CNM-CSIC, and Valeria Grazu and Jesús Martínez, CSIC researchers at the Institute of Nanoscience and Materials and Aragon INMA (CSIC-UNIZAR) and CIBER-BBN.

The research has counted with the expertise of two NANBIOSIS Units from CIBER-BBN and IQAC-CSIC; NANBIOSIS U2 Customized Antibody Service (CAbS), led by Pilar Marco and Nuria Pascual, and U29 Oligonucleotide Synthesis Platform (OSP), led by Ramón Eritja and Anna Avinó.

This research work was carried out in the context of the PoC4CoV project, led by M. Pilar Marco and César Fernández and financed through the Interdisciplinary Thematic Platform of Global Health of the CSIC. Subsequently, the research has continued as part of a project financed by La Marató de TV3 in 2020 to fight against COVID-19 in which experts from the Faculty of Chemistry of the UB also participate.

Polypurine tweezers to capture viral RNA
The new methodology is based on the ability of polypurine tweezers (PPRHs) —designed by the UB cancer therapy group— to capture viral RNA and form a high affinity triplex. When this hybrid structure is connected to a molecular probe and is brought into contact with the affected patient’s sample, a viral agent detection signal is obtained. The method now presented in the scientific publication has been called the Triplex Enhanced Nucleic Acid Detection Assay (TENADA).

“PPRHs are unmodified single-stranded DNA hairpins that are made up of two mirror domains of antiparallel polypurines. These domains, connected to each other by a thymidine loop, are linked by intramolecular reverse Hoogsteen bonds. Molecular tweezers can specifically bind to polypyrimidine sequences in single-stranded (ssDNA), double-stranded (dsDNA) or RNA viruses through Watson-Crick bonds, thus forming an antiparallel triplex”, details Professor Carlos J. Ciudad, from the Department of Biochemistry and Physiology of the UB.

An effective and faster methodology than the PCR test
Among the advantages that it presents in the detection of viral RNA, it should be noted that the PPRHs methodology can be applied without the intervention of reverse transcriptase —the enzyme that converts RNA into DNA— or the thermocycler (the device that amplifies the material samples). DNA with polymerase chain reaction or PCR). In addition, it has a sensitivity and specificity equivalent to that of the PCR test and can provide results in less than an hour.

In the framework of the work, the team used the hybridization sandwich format in various biosensing devices. This approach uses two oligonucleotides: a triplex-forming PPRH hairpin to serve as the capture probe, and a labeled duplex-forming DNA oligonucleotide to serve as the detection probe.

“The triplex-forming PPRH hairpins were designed to bind to SARS-CoV-2 polypyrimidine sequences, while the detection probes were designed to complement a region near the polypyrimidine target site. Thus, the presence of SARS-CoV-2 RNA is detected by the formation of the ternary complex on the surface of the biosensor”, details Professor Verónica Noé (UB-IN2UB).

This methodology has been implemented in a compact electrochemical device that integrates an electrochemical cell with two electrodes on a chip —manufactured in the Micro and Nanofabrication White Room of the IMB-CNM-CSIC— and a paper fluidic component, and in a Lateral thermal flow implemented in nitrocellulose and using plasmonic nanoparticles and thermal paper that has been developed at the INMA (CSIC-UNIZAR).

TENADA: applications in biomedical research
PPRHs are described in the scientific literature as gene silencing tools for various genes mainly involved in cancer. In addition, they have also been incorporated as probes in biosensors for the detection of small RNA molecules (micro-RNA) to determine the state of DNA methylation and for the diagnosis of pneumonia caused by the fungus Pneumocystis jirovecii.

Now, the new TENADA methodology proves to be effective not only in the detection of viral particles. The high affinity of PPRHs for viral RNA is a property that can be applied to inhibit the virus replication process. For this reason, the antiviral properties of CC1PPRH and CC2PPRH polypurine clamps in cells of the VeroE6 lineage infected with SARS-CoV-2 virions are now also being studied.

In parallel, the work of the different groups involved has also been the basis of a technology that was patented and licensed in July 2022 through the participation of the UB Patent Center, the CSIC and the CIBER-BBN. In turn, this patent has been licensed non-exclusively to the Spanish company Nanoinmunotech through the management of the Bosch i Gimpera Foundation (FBG-UB) in the technology protection process and the company’s license agreement. .

Article of reference:

Aviñó, A.; Cuestas-Ayllón, C.; Gutiérrez-Capitán, M.; Vilaplana, L.; Grazu, V.; Noé, V.; Balada, E.; Baldi, A.; Félix, A.J.; Aubets, E.; Valiuska, S.; Domínguez, A.; Gargallo, R.; Eritja, R.; Marco, M.-P.; Fernández-Sánchez, C.; Martínez de la Fuente, J.; Ciudad, C.J. «Detection of SARS-CoV-2 Virus by Triplex Enhanced Nucleic Acid Detection Assay (TENADA)»International Journal of Molecular Sciences, diciembre de 2022. Doi:10.3390/ijms232315258

Read More

Happy Day of Chemistry! The role of Chemistry in a sustainable research in health

Today, November 15 is a day of celebration for us, the Day of the Chemistry in Spain!

Chemistry is the science that studies matter, how it is composed, its properties and how its structures are transformed and, as matter is everything, including living beings and ourselves, we can say that chemistry is omnipresent and transversal in all areas surrounding us. Chemistry is everywhere, we ourselves are chemistry and our health and our life is chemistry.

Everything around us is chemistry in the environment, foods, what we use and what we touch every day. Our own body is a sophisticated complex factory with an infinite number of chemical processes taking place on a perfect and synchronized manner”- points Pilar Marco, Scientific Director of NANBIOSIS U2 Custom Antibody Service (CAbS) from CIBER-BBN at IQAC-CSIC.

The crucial role of chemistry in everyday life is also evidence in the development of current technology and the economy. According the VCI Prognos Study, the Global growth forecast for Industrial Sectors, places the chemical industry in the fist position. As far as national picture, the INE Statistics on R+D Activities 2020 -last publish report-, chemical and pharmaceutical industry employs the 22,2 % of research staff recruited and the investment and expenditure on the chemical and pharmaceutical industry represents the 23,6% R+D and Innovation -above the motor vehicles industry.

Thanks to chemical and pharmaceutical research,

medicines, vaccines and health products have made great strides in fighting diseases and improving quality of life. Thanks to chemical and pharmaceutical medicine research, in few years, it will be possible, for example, to count on smart implants delivering personalised drugs only where cancer or infections are detected or biosensors circulating in our body to find diseases only one week after infection.

At the Institute of Advanced Chemistry of Catalonia, four NANBIOSIS units of CIBER-BBN use chemistry to deliver new therapeutic and diagnostic approaches that improve the quality of life of the society.

One of the research lines of the Nb4D group-U2 CabS at IQAC-CSIC (led by Pilar Marco and Nuria Pascual) focuses on the chemical signals that bacteria emit to communicate with each other and thus develop virulence mechanisms. Their knowledge will allow the development of new therapeutic and diagnostic strategies to mitigate the serious problem of antimicrobial resistance.

NANBIOSIS U3 Synthesis of Peptides UnitMS4N group, led by Miriam Royo, explores the use of diverse types of chemical multivalent platforms (oligomers, dendrimers, polymers, micelles and lipid nanovesicles) for the development of drug delivery systems for cancer treatment, protein delivery systems for the treatment of lysosomal diseases and macromolecular compounds that have intrinsically therapeutic properties with application to central nervous system diseases.

Chemistry plays an essential role in helping society achieve Sustainable Development Goals (SDGs)

In 2015 the United Nations created a universal call to action to end poverty, protect the planet, and ensure that all people enjoy peace and prosperity by 2030. This framework, comprising 17 aspirational goals known as the Sustainable Development Goals (SDGs)

Chemistry is key to achieve the SDG 3: Good Health & Well-Being with the development of new technologies that will provide a deeper understaunding of human health, making posible better, cheeper and faster medical diagnosis and treatmens.

In this sense, Carlos Rodriguez Abreu, Scientific Director of NANBIOSIS Unit for the characterization of nanostructured liquids (U12) explains: “The goals of sustainable development are producing a shift towards surfactants not based on petroleum derivatives, but derived from other raw materials that are more biocompatible and that allow a circular economy that is less aggressive with the environment. Quality control is necessary with regard to the properties of the products that contain surfactants, such as the droplet size in emulsions, the particle size in suspensions, their colloidal stability over time, among others. Additionally, products must be precisely formulated to optimize the use of raw materials and obtain the desired properties. In this context, the NANBIOSIS U12, acredited with ISO 9001:2015 by AENOR, offers a wide range of advanced analysis techniques for the determination of different colloidal properties such as droplet size and particle size, colloidal stability, viscosity, surface tension, pore size distribution, and determination of phase behavior and structure for the tailor-made formulation of surfactant and colloid systems for pharmaceutical and biomedical applications.

The Nucleic Acid Chemistry group at IQAC-CSIC – NANBIOSIS U29 Oligonucleotide Synthesis Platform (OSP) is developing new compounds based in DNA and RNA to detect and treat diseases participating in several projects with several research and industrial partners such as La Marato de TV3 (Covid), Oligofastx, Caminan2, Osteoatx. These new drugs use the natural mechanisms for gene regulation to treat undruggable diseases such Muscular dystrophy and others. Importantly special attention is made to design novel synthetic protocols to produce less organic waste what contributes to the sustainable development. 

We wish to all the family of chemistry professionals new projects and inspiration to achive humans Good Health & Well-Being and keep the world moving!

And Happy Chemistry Day, too, for all the chemistry enthusiasts!

Read More

The first TECNIO Conference and NANBIOSIS’ researchers participation

More than 200 people attended the first edition of the TECNIO Conference that took place on October 19th, 2022 in Girona. Outstanding experts from research groups, companies and the Catalan administration discussed the model of technological sovereignty that Catalonia needs to generate high-impact innovation.

As far as Nora Ventosa, President of the TECNIO Association and Scientific Director of NANBIOSIS U6 Biomaterial Processing and Nanostructuring Unit (from CIBER-BBN and IQAC):Political management is the key to ensure that the path of transference follows a high speed train”

Researchers of NANBIOSIS U2 Custom Antibody Service (CAbS) – Nb4D Group from CIBER-BBN and IQAC-CSIC presented their technological offer in the 1st TECNIO Congress

During the congress there were different presentations, round tables and an exhibition space to interact with the TECNIO agents.

For further informatio: https://www.eventbrite.es/e/tecnio-congress-2022-tickets-415838312587

Related News

Read More

1st Nanomedicine Forum of CIBER-BBN/NANBIOSIS and CSIC Nanomed Conection

During the days 30 of June and 1st of July took place in Barcelona, in the auditorium of the Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), the 1st Forum on Nanomedicine gathering scientists from the CSIC net Nanomed Conection and from the CIBER-BBN and its ICTS NANBIOSIS.

This forum brought toguether researchers from the most eminent national research centers in nanomedicine, that during the two days meeting presented their works and findings and discussed the impact of nanomedicine in the fields of drug delivery, diagnosis and therapy.

The workshop was open by the Director of IQAC-CSIC,  Jesús Joglar, the  Scientific Coordinator of Nanomed Conection, Fernando Herranz, and the Scientific Director of CIBER-BBN, Ramón Martínez Máñez.

18 research groups gave their talks distributed in four sessions:

  • Nanobiotechnological solutions for diagnosis and therapy
  • Drug delivery nanosystems
  • Applications for oncology 
  • Nanomedicine & other frontier applications

The presentations aroused great interest and futher debate among the attendees present in the auditorium (around 50) and the on line participants (The event was also broadcast online previous registration with more than 125 registrations received).

The videos of the presentations will be soon available in the NANBIOSIS youtube channel.

Here we highlight the eight talks by researchers from NANBIOSIS units:

The first session of Nanobiotechnological solutions for diagnosis and therapy,  started  with the talk by Montserrat Rodríguez from Nb4D group NANBIOSIS U2 CAbS, from CIBER-BBN and IQAC-CSIC, entitled “Targeting aromatic amino acid metabolism for the early diagnosis of neurological diseases”, presenting their results on in vitro samples, on thermal power characterization experiments to study the thermal efficiency of non-sinusoidal stimulation and on efficiency characterization experiments in cell cultures with cancer cell liness.

Also in this session chaired by Miriam Royo, Scientific Coordinator of NANBIOSIS U3 Synthesis of Peptides Unit of  CIBER-BBN and IQAC-CSIC,  took place an interesting and passionate talk by Ramón Eritja, Scientific Director of NANBIOSIS U29 Oligonucleotide Synthesis Platform (OSP)

In the last years, interest in therapeutic applications of oligonucleotides has increased enormously, especially after the development of messenger RNA vaccines in response to the COVID-19 pandemic. In this way, metabolic diseases such as dyslipidemia and hereditary diseases such as Duchenne muscular dystrophy have been successfully addressed. The NANBIOSIS  Oligonucleotide Synthesis Platform (OSP) focuses on the design, synthesis and characterization of modified oligonucleotides, in order to enhance the therapeutic properties of the oligonucleotides and to improve the control of gene expression. Ramon Eritja presented their most recent results in the development of new conjugates with antiproliferative activity and in the design of DNA probes for the detection of viral genomes.

 

In the session of “Nanomedicine and other frontiers applications”, chaired by María del Puerto Morales Herrero (ICMM-CSIC), Elena Martínez Fraiz,  from the Nanobioengineering group of CIBER-BBN and IBEC running NANBIOSIS Unit 7 of Nanotechnology, presented  a nanostructured surface able to produce multivalent effects of surface-bound ephrinB1 ligands on the dynamics of oligomerization of EphB2 receptors  whic can benefit applications such as the design of new bioactive materials and drug-delivery systems.

The session of Drug delivery nanosystems, chaired by Ramón Martínez Máñez, began with the talk by Vanessa Díaz Riascos, presesnting the in vivo efficacy, biodistribution and toxicity testing of nanomedicines at NANBIOSIS U20 FVPR, of CIBER-BBN and VHIR, explaining how their texting expertise and their in vivo and ex vivo fluorescence imaging techniques facilitate a rapid and efficient preclinical development of candidates, reducing considerably the time and costs of conventional developments.


Santiago Grijalvo Torrijo, from NANBIOSIS U12 Nanostructured liquid characterization unit expoke about Nano-emulsion-derived polymeric carriers for biomedical applications also discussing the impact of the protein corona on colloidal stability, antioxidant activities, cytotoxicity and cellular uptake of drug-loaded nanoparticles.

Antoni Llopis Lorente, (NANBIOSIS U26 NMR: Biomedical Applications II), expoke about Gated silica nanoparticles for controlled release. Chemical communication, based on the exchange of molecules as messengers, allows different entities to share information, cooperate and orchestrate collective behaviors. Communication using chemical messengers (such as neurotransmitters, hormones and pheromones) is the main way of communication across the natural world; yet engineering chemical communication between micro/nanosystems is a key emergent topic in micro/nanotechnology, biomimicry and related areas. Santiago explainined recent progress by their group in the development of engineered particles for chemical communication and nanomedicine applications.

And closing the session, Mariana Köber (Nanomol Group –NANBIOSIS U6 of Biomaterial Processing and Nanostructuring Unit  from CIBER-BBN and ICMAB-CSIC) gave a talk on Quatsomes as versatile nanovesicles for biomedical applications.

In the session of Applications for Oncology, Pilar Martín Duque from NFP group – NANBIOSIS U9 Synthesis of Nanoparticles Unit of CIBER-BBN and INMA-CSIC, gave a very interesting talk explained their approach and recent progress on the search of trojan horses for an improved theragnosis of cancer.

Here we want to thank the Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) for hosting this event and for the help in its preparation and development.

Read More

New results evidence new biomarkers for early diagnosis of P. aeruginosa infections

Pseudomonas aeruginosa is a common multidrug-resistant pathogen that causes acute and chronic infections. However, P. aeruginosa, as many other bacterial species, has developed resistance to antibiotics being difficult to treat. For this reason diagnostic methods allowing detection at early  stages of the infection are required  and, therefore, efficient biomarkers of infection are very helpful. These fast diagnosis will help on the subsequent therapeutic treatment.

The Nb4D group of CIBER-BBN and IQAC-CSIC (led by M.-Pilar Marco) has recently conducted a research to develop a highly sensitive, specific and reliable immunochemical assay to detect pyocyanin (PYO), one of the most important virulence factors of Pseudomonas aeruginosa.

The assay uses a high-affinity monoclonal antibody produced by the unit 2 of the ICTS NANBIOSIS Custom Antibody Service (CAbS) (Dr. Núria Pascual).

The microplate-based ELISA developed is able to achieve a limit of detection (LoD) of 0.07 nM, which is much lower than the concentrations reported to be found in clinical samples (130 µM in sputa and 2.8 µM in ear secretions). The ELISA has allowed the investigation of the release kinetics of PYO and 1-OHphz (the main metabolite of PYO) of clinical isolates from P. aeruginosa-infected patients. Significant differences have been found between clinical isolates obtained from patients suffering an acute or a chronic infection (~6,000 nM vs. ~8 nM of PYO content, respectively).

The results found point to a real potential of PYO as a biomarker of P. aeruginosa infection and the possibility to use such virulence factor also as a biomarker for patient stratification and for an effective management of these kinds of infections.

Article of referece:

Rodriguez-Urretavizcaya, B., Pascual, N., Pastells, C., Martin-Gomez, M.-T., Vilaplana, Ll.*, Marco. M.-P. (2021). “Diagnosis and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin From Clinical Bacterial Isolates.” Frontiers in Cellular and Infection Microbiology 11(1215). https://doi.org/10.1016/j.jmbbm.2021.104793

Read More

Nanomedicine in the Medicine of the Future

Scientists of CIBER-BBN and NANBIOSIS ICTS have participated in the 4th Conference “Anticipating the Medicine of the Future”, which took place on November 30th, organized by the Roche Institute Foundation. The topics for this ediction had been identified by the Observatory of Trends in the Medicine of the Future: Pharmacogenomics, Nanomedicine and Epigenomic

The event counted with three roundtables for discussion in relation to the three topics. The second one, on Nanomedicine, was moderated by Joaquín Arenas, Director of the Research Institute of the 12 de Octubre University Hospital.

Ramón Martínez Máñez, Professor of Inorganic Chemistry at the Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) of the Polytechnic University of Valencia and Scientific Director of CIBER-BBN and Unit 26 of NANBIOSIS gave a talk entitled “Macro problems, nano solutions”. After that, the debate was openwith the participation of Maria Pilar Marco, Research Professor of the Spanish Council for Scientific Research (CSIC) and Coordinator of the Nanomedicine Research Program CIBER-BBN and Scientific Director of unit 2 of NANBIOSIS, CAbS, José Becerra, Emeritus Professor of of Cell Biology of the University of Malaga and Principal Investigator of CIBER-BBN, BIONAND and IBIMA and Maria Jesús Vicent, Coordinator of the Advanced Therapies Area of the Principe Felipe Research Center.

The Roundtable discussed the applications of nanomedicine in the Medicine of the Future and in Personalized Precision Medicine, as well as the challenges facing nanomedicine.

The Observatory of Trends in the Medicine of the Future, promoted by the Roche Institute Foundation, aims to generate and disseminate knowledge in areas of incipient knowledge related to Personalized Precision Medicine and that are part of the Medicine of the Future.

In this context, the fundation Instituto Roche has recently published a report on nanomedicine coordinated by Ramón Martínez in which José Becerra, María Pilar Marco and María Jesús Vicent have participated as experts.

Currently, nanoparticles or nanostructures are being applied for the controlled release of drugs in cancer and other pathologies and nanodevices for the diagnosis of diseases or the development of nanomaterials for applications in regenerative medicine. In the coming years, and with the translation into clinical practice of more and more developments based on these technologies, nanomedicine will contribute to the medicine of the future approaching the diagnosis and treatment of diseases earlier, more efficiently and in a more efficient and personalized way.

https://www.institutoroche.es/observatorio/nanomedicina

Read More

‘Point-of-care or PoC’ devices are able to directly detect the genetic material of the virus in just 30 minutes

Twenty five Spanish researchers linked to the Higher Center for Scientific Research, CSIC, who are working more directly on the project ‘Point-of-care tests for the rapid detection of SARS-CoV-2’ – Studies for the development of technologies effective diagnosis and early detection of SARS-CoV-2- have met since last Wednesday and until this Friday at the Benasque Science Center ‘Pedro Pascual’ to analyze the state or of the different programs and lines of research on the covid-19.

After months of intense work, among the most outstanding achievements in relation to the detection of the genetic material of the virus, is the development of a series of technologies that allow this detection without the need for PCR. Researchers have managed, by designing specific probes, to directly detect the genetic material of the virus in just 30 minutes.

Dra. Pilar Marco, researchar of CSIC and Scientific Director of Nanbiosis U2 Custom Antibody Service (CAbS) – explains that “the PCR technique, which it is very sensitive and very precise, has a disadvantage in terms of time because it requires an amplification stage of this genetic material that makes the process long, this is going to revolutionize the diagnosis, not only for Covid-19, but also of other infectious diseases”.

Researcher of three units of NANBIOSIS, attended the meeting and some of them gave talks:

  • Nuria Pascual, Scientific Coordinator of NANBIOSIS U2 CAbS espoke about Antibodies production
  • Also from NANBIOSIS Unit 2, J. Pablo Salvador espoke about Immunochemical tests and .
  • Serological test of peptide epitopes were explained by Julian Guercetti.
  • Anna Avigñó, Scientific Coordinator of NANBIOSIS U29, espoke about Design of oligonucleotides for a new method in Covid-19 detection without PCR.
  • And Macarena Duran, representing MS4N group and the Peptide synthesis unit of NANBIOSIS (U3) explained the synthesis of potential SARS-COV2 epitopes that have been applied for hybridome selection for mAb and to generate epitope microarrays to analyze serological samples.

The meeting has served to share the most relevant results that have been obtained in the context of the project, as well as discussion of new strategies to address problems that have arisen throughout the project and in turn, discuss future objectives.

Other related news by NANBIOSIS:

Source of information: Heraldo de Aragón

Read More

Nanobodies for biosening at the European Biosensor Symposium digital seminars

Next November 8, the researcher of NANBIOSIS U2 Custom Antibody Service (CAbS)  J.-Pablo Salvador will host the Seminar “Nanobodies for biosensing” in the framework of European Biosensor Symposium digital seminar series which are schedulled on the third Tuesday of every month.

Nanobodies® (Nbs) are the recombinant binding domain from the heavy chain antibodies tipically produced from camèlids.  Besides their great potential as molecules in drug development, Nanobodies possess excellent functional properties that aid in their development for diagnostic tools. In this seminar, Dr. Salvador will explain the the outstanding properties of Nanobodies. Three graduate student speaker and up to five graduate student poster presenters will will take the opportunity to show different applications in the biosensing area.

The online event will take place on 16th November at 18:00 

Registration is free.

Further information on the European Biosensor Symposium digital seminars

Read More