+34 620 10 75 37info@nanbiosis.com

Preclinical validation bioimaging - Services

Preclinical validation bioimaging – Services

U26-S03. Metabolomic Studies

Metabolomic Studies

The service is intended for undergoing metabolic studies. Thanks to a 14 T nmr equipment equipped with thermostatic automatic sampler

Customer benefits

The service is integrated in the University of Valencia core facility that ensures the correct maintenance and the offsite service runed by technicians under ISO 9001.

Target customer

The primary audience are clinic groups that require massive metabolic studies for research either in plasma or urine or other biofluids.

Read More

U26-S02. NMR experiments in solid state

NMR experiments in solid state

The service is intended for the determination of the structure of insoluble organic compounds, inorganic materials, nanomaterials, Studies of their modifications. Thanks to a 9.4 T solid nmr equipment

Customer benefits

The service is integrated in the University of Valencia core facility that ensures the correct maintenance and the offsite service runed by two technicians under ISO 9001.

Target customer

The primary audience are groups working on materials or nanomaterials, enterprises that require solid nmr to performe quality control.

Read More

U26-S01. Acquisition of mono and bidimensional spectra

Acquisition of mono and bidimensional spectra

The service is intended for the determination of the structure of organic compounds, metabolomics, diffusion studies. Thanks to a 11.7 T nmr equipment

Customer benefits

The service is integrated in the University of Valencia core facility that ensures the correct maintenance and the option of offsite service runed by two technicians under ISO 9001.

Target customer

The primary audience is synthetic organic chemistry, enterprises that require nmr to performe quality control, other unknown materials that require elucidation such as synthetic abuse drugs.

Read More

U24-S01 Evaluation of therapies for cardiovascular disease

Evaluation of therapies for cardiovascular disease

With cardiovascular disease consistently representing a major cause of death worldwide, a platform to perform experimental studies testing the efficacy of candidate therapies for CVD is necessary.
The methodology implemented in NANBIOSIS Unit 24 for this purpose has been tested and validated in several papers (Refs below). In brief, CVD is induced in a relevant large animal model (i.e. myocardial infarction and swine) using image guided surgical techniques (i.e. percutaneous balloon occlusion of a coronary artery for a pre-determined amount of time). Once the model is established, the therapy under study is applied and the experimental subjects followed up for a fixed length of time. Clinical grade imaging (i.e. Cardiac Magnetic Resonance including delayed enhancement) and laboratory techniques are used to follow up and document the evolution of the induced CVD. Generally, image acquisition is performed at baseline and serially during the predetermined duration of the study in order to study the effect of the therapy on measurable endpoints (i.e. left ventricular ejection fraction) to document improvement.

Customer benefits

The studies are tailored to the needs of each specific candidate intervention, can be implemented with different follow-up times and can be performed under regulatory requirements, since the performing institution is Certified for Good Laboratory Practices.
Thus the Service can be provided as proof-of-concept studies, full safety and efficacy or under GLPs to meet regulatory agencies’ guidelines and assure clinical translation, so that the customers can take their therapy to a clinical trial faster and more efficiently, thanks to the full range of capabilities offered in this service.

Target customer

The offered service can be of interest to scientists from academia willing to test a possible CVD therapy, including biologicals, small companies that have a candidate molecule which is promising enough to warrant large animal trials or big pharma willing to undergo GLP studies to commercialize their product.

References

  • Aimo A et al. Colchicine added to standard therapy further reduces fibrosis in pigs with myocardial infarction. J Cardiovasc Med (Hagerstown). 2023 Nov 1;24(11):840-846. doi: 10.2459/JCM.0000000000001554. Epub 2023 Sep 29. PMID: 37773884.
  • Österberg K et al. Personalized tissue-engineered veins – long term safety, functionality and cellular transcriptome analysis in large animals. Biomater Sci. 2023 May 30;11(11):3860-3877. doi: 10.1039/d2bm02011d. PMID: 37078624.
  • Pulido M et al. Transcriptome Profile Reveals Differences between Remote and Ischemic Myocardium after Acute Myocardial Infarction in a Swine Model. Biology (Basel). 2023 Feb 21;12(3):340. doi: 10.3390/biology12030340. PMID: 36979032; PMCID: PMC10045039.
  • Blanco-Blázquez V et al Intracoronary Administration of Microencapsulated HGF in a Reperfused Myocardial Infarction Swine Model. J Cardiovasc Dev Dis. 2023 Feb 17;10(2):86. doi: 10.3390/jcdd10020086. PMID: 36826582; PMCID: PMC9960949.
  • Arenal Á et al. Effects of Cardiac Stem Cell on Postinfarction Arrhythmogenic Substrate. Int J Mol Sci. 2022 Dec 19;23(24):16211. doi: 10.3390/ijms232416211. PMID: 36555857; PMCID: PMC9781106.
  • Báez-Díaz C et al. Intrapericardial Delivery of APA-Microcapsules as Promising Stem Cell Therapy Carriers in an Experimental Acute Myocardial Infarction Model. Pharmaceutics. 2021 Nov 1;13(11):1824. doi: 10.3390/pharmaceutics13111824. PMID: 34834235; PMCID: PMC8626005.
  • Crisóstomo V et al. The epicardial delivery of cardiosphere derived cells or their extracellular vesicles is safe but of limited value in experimental infarction. Sci Rep. 2021 Nov 12;11(1):22155. doi: 10.1038/s41598-021-01728-y. PMID: 34772964; PMCID: PMC8590017.
  • Prat-Vidal C et al. Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction. Cells. 2021 Sep 28;10(10):2571. doi: 10.3390/cells10102571. PMID: 34685551; PMCID: PMC8534140.
  • Ziani K et al. Characterization of encapsulated porcine cardiosphere-derived cells embedded in 3D alginate matrices. Int J Pharm. 2021 Apr 15;599:120454. doi: 10.1016/j.ijpharm.2021.120454. Epub 2021 Mar 5. PMID: 33676988.
  • Rossello X et al. CIBER-CLAP (CIBERCV Cardioprotection Large Animal Platform): A multicenter preclinical network for testing reproducibility in cardiovascular interventions. Sci Rep. 2019 Dec 30;9(1):20290. doi: 10.1038/s41598-019-56613-6. PMID: 31889088; PMCID: PMC6937304.
  • Crisostomo V et al. Dose-dependent improvement of cardiac function in a swine model of acute myocardial infarction after intracoronary administration of allogeneic heart-derived cells. Stem Cell Res Ther. 2019 May 31;10(1):152. doi: 10.1186/s13287-019-1237-6. PMID: 31151405; PMCID: PMC6544975.
Read More

U20-S08. Immunotoxicity assays (On-site&Remote) OUTSTANDING

Immunotoxicity assays

Read More

U20-S07. In vivo PK/PD assays (Remote) OUTSTANDING

In vivo PK/PD assays

Read More

U20-S06. In vivo ADME and biodistribution assays (Remote) OUTSTANDING

In vivo ADME and biodistribution assays

Read More

U25-S03. NMR spectrometer 400 MHz with HRMAS/CPMAS probes (Onsite&Remote) OUTSTANDING

NMR spectrometer 400 MHz with HRMAS/CPMAS probes (Onsite&Remote) OUTSTANDING

400 MHz: AVANCE III console, probes 4mm HRMAS BBI 1H/13C/31P/D, with Z-gradients, 4mm MAS VTN 1H/BB for solid-state, and BCU Xtreme unit for sample temperature control

Customer benefits

HRMAS allows for high-resolution NMR spectra of semi-solid and solid samples by spinning the sample at the magic angle, which minimizes broadening due to sample heterogeneity and anisotropic interactions. Also, potential for characterization of polymers, catalysts, porous materials, and nanomaterials, providing insights into molecular structure, dynamics, and interactions. CPMAS NMR is particularly useful for studying crystalline materials, including organic and inorganic compounds, minerals, and pharmaceuticals. It provides information about chemical composition, crystal structure, and molecular dynamics.

Target customer

Researchers or companies with needs to study solid or semisolid samples regarding structure, characterization, interactions or composition.

References

  • Jiménez-Xarrié E, et al. In vivo and ex vivo magnetic resonance spectroscopy of the infarct and the subventricular zone in experimental stroke. J Cereb Blood Flow Metab. 2015 May;35(5):828-34. doi: 10.1038/jcbfm.2014.257. Epub 2015 Jan 21. PMID: 25605287; PMCID: PMC4420856.
  • Delgado-Goñi T, et al. Assessment of a 1H high-resolution magic angle spinning NMR spectroscopy procedure for free sugars quantification in intact plant tissue. Planta. 2013 Aug;238(2):397-413. doi: 10.1007/s00425-013-1924-y. Epub 2013 Jul 4. PMID: 23824526.
  • Martín-Sitjar J, et al. Influence of the spinning rate in the HR-MAS pattern of mobile lipids in C6 glioma cells and in artificial oil bodies. MAGMA. 2012 Dec;25(6):487-96. doi: 10.1007/s10334-012-0327-6. Epub 2012 Jul 20. PMID: 23011574.
  • Valverde-Saubí D, et al. Short-term temperature effect on the HRMAS spectra of human brain tumor biopsies and their pattern recognition analysis. MAGMA. 2010 Sep;23(4):203-15. doi: 10.1007/s10334-010-0218-7. Epub 2010 Jun 13. PMID: 20549297.
  • Simões RV, et al. 1H-MRSI pattern perturbation in a mouse glioma: the effects of acute hyperglycemia and moderate hypothermia. NMR Biomed. 2010 Jan;23(1):23-33. doi: 10.1002/nbm.1421. PMID: 19670263.
Read More

U25-S05. Preclinical horizontal spectrometer Biospec 7T (Onsite&Remote) OUTSTANDING

Preclinical horizontal spectrometer Biospec 7T (Onsite&Remote) OUTSTANDING

7T Bruker BioSpec 70/30 USR MR system (Bruker BioSpin GmbH, Karlsruhe, Germany) equipped with a BGA12 mini-imaging gradient insert (maximum amplitude: 400 mT/m and slew rate: 5500 T/m/s). Capability for magnetic resonance imaging and spectroscopy of small animals (e.g. mouse, rat) and studies of model solutions (e.g. new contrast agents). Also capabilities for advanced imaging techniques such as diffusion and perfusion weighted images and fractional anisotropy. Coupled with anaesthetic equipment and vital signs monitoring for in vivo experiments.

Customer benefits

Noninvasive studies of anatomy and biochemical environment depending on the organ. Studies of physiological and pathological anatomy changes with a high resolution level. Magnetic resonance is not based on ionizing radiation and can be performed as many times as needed. Assessment of new therapeutic agents efficacy and novel contrast agents potential. T1, T2 and T2* maps measurement.

Target customer

Research groups or companies working with preclinical models, novel therapeutic or contrast agents, characterization of novel preclinical models based in cancer, inflammatory or neurological diseases.

References

  • Zhang S, et al. Metal-Free Radical Dendrimers as MRI Contrast Agents for Glioblastoma Diagnosis: Ex Vivo and In Vivo Approaches. Biomacromolecules. 2022 Jul 11;23(7):2767-2777. doi: 10.1021/acs.biomac.2c00088. Epub 2022 Jun 24. PMID: 35749573; PMCID: PMC9277593.
  • García-Pardo J, et al. Bioinspired Theranostic Coordination Polymer Nanoparticles for Intranasal Dopamine Replacement in Parkinson’s Disease. ACS Nano. 2021 May 25;15(5):8592-8609. doi: 10.1021/acsnano.1c00453. Epub 2021 Apr 22. PMID: 33885286; PMCID: PMC8558863.
  • Wu S, et al. Anti-tumour immune response in GL261 glioblastoma generated by Temozolomide Immune-Enhancing Metronomic Schedule monitored with MRSI-based nosological images. NMR Biomed. 2020 Apr;33(4):e4229. doi: 10.1002/nbm.4229. Epub 2020 Jan 11. PMID: 31926117.
  • Güell-Bosch J, et al. Progression of Alzheimer’s disease and effect of scFv-h3D6 immunotherapy in the 3xTg-AD mouse model: An in vivo longitudinal study using Magnetic Resonance Imaging and Spectroscopy. NMR Biomed. 2020 May;33(5):e4263. doi: 10.1002/nbm.4263. Epub 2020 Feb 17. PMID: 32067292.
  • Suárez-García S, et al. Dual T1/ T2 Nanoscale Coordination Polymers as Novel Contrast Agents for MRI: A Preclinical Study for Brain Tumor. ACS Appl Mater Interfaces. 2018 Nov 14;10(45):38819-38832. doi: 10.1021/acsami.8b15594. Epub 2018 Nov 1. PMID: 30351897.
  • Lope-Piedrafita, S. (2018). Diffusion Tensor Imaging (DTI). In: García Martín, M., López Larrubia, P. (eds) Preclinical MRI. Methods in Molecular Biology, vol 1718. Humana Press, New York, NY. doi: 10.1007/978-1-4939-7531-0_7
  • Arias-Ramos N, et al. Metabolomics of Therapy Response in Preclinical Glioblastoma: A Multi-Slice MRSI-Based Volumetric Analysis for Noninvasive Assessment of Temozolomide Treatment. Metabolites. 2017 May 18;7(2):20. doi: 10.3390/metabo7020020. PMID: 28524099; PMCID: PMC5487991.
  • Jiménez-Xarrié E, et al. Brain metabolic pattern analysis using a magnetic resonance spectra classification software in experimental stroke. BMC Neurosci. 2017 Jan 13;18(1):13. doi: 10.1186/s12868-016-0328-x. PMID: 28086802; PMCID: PMC5237280.
Read More

U25-S06. Dynamic nuclear polarizer HyperSense® (Onsite&Remote) OUTSTANDING

Dynamic nuclear polarizer HyperSense® (Onsite&Remote) OUTSTANDING

Sheltered magnet of 3.35T. Integrated microwave source Elva-1™ VCOM-10, frequency ≈ 94 GHz. BOC Edwards™ E2M80 Series Vacuum Pump. Sample dissolution and automatic transfer system from polarizer to Bruker 600 MHz spectrometer

Customer benefits

DNP significantly boosts the sensitivity of NMR experiments, enabling the detection of nuclei present at low concentrations or in low abundance compared to conventional NMR techniques. It can be used in metabolomics studies to analyze metabolic pathways, identify metabolites, and investigate metabolic fluxes in biological samples such as tissues, cells, and biofluids. Provides real-time monitoring of chemical reactions and kinetics, providing valuable information about reaction mechanisms, intermediate species, and reaction rates.

Target customer

Researchers or companies with needs to enhance sensitivity and elucidate metabolic pathways or changes occurred during therapy, for example, changes in the glycolytic metabolism within tumor cells. Polarized samples can be used for further in vitro or in vivo experiments depending on the information needed.

References

  • Monteagudo E, Virgili A, Parella T, Pérez-Trujillo M. Chiral Recognition by Dissolution DNP NMR Spectroscopy of 13C-Labeled dl-Methionine. Anal Chem. 2017 May 2;89(9):4939-4944. doi: 10.1021/acs.analchem.7b00156. Epub 2017 Apr 21. PMID: 28394124.
  • Chavarria L, Romero-Giménez J, Monteagudo E, Lope-Piedrafita S, Cordoba J. Real-time assessment of ¹³C metabolism reveals an early lactate increase in the brain of rats with acute liver failure. NMR Biomed. 2015 Jan;28(1):17-23. doi: 10.1002/nbm.3226. Epub 2014 Oct 10. PMID: 25303736.
Read More