+34 679 490 537info@nanbiosis.com

News U6

News U6

Mesenchymal stem cells or exosomes with fibrin glue mesh fixation modulates the inflammatory reaction in a murine model of incisional hernia

Javier García Casado, Scientific Director of NANBIOSIS U14, Cell Therapy Unit, and Francisco Miguel Sánchez Margallo, Scientific Director of  CCMIJU, are co-author of the publication “Fibrin glue mesh fixation combined with mesenchymal stem cells or exosomes modulates the inflammatory reaction in a murine model of incisional hernia” by Acta Biomaterialia.

In vitro experiments were performed by the ICTS Nanbiosis (Unit 14. Cell therapy at CCMIJU). Exosomes characterization was performed by the ICTS Nanbiosis (Unit 6: Biomaterial processing and Nanostructuring Unit). In vivo experiments were performed by the ICTS Nanbiosis (Unit 22. Animal housing at CCMIJU).

The study has demonstrated a significant increase of anti-inflammatory M2 macrophages and TH2 cytokines when MSCs or exo-MSCs were used. Moreover, the analysis of MMPs, TIMPs and collagen exerted significant differences in the extracellular matrix and in the remodeling process. The in vivo study suggests that the fixation of surgical meshes with FG and MSCs or exo-MSCs will have a beneficial effect for the treatment of incisional hernia in terms of improved outcomes of damaged tissue, and especially, in the modulation of inflammatory responses towards a less aggressive and pro-regenerative profil,

The implantation of surgical meshes is the standard procedure to reinforce tissue defects such as hernias. However, an exacerbated and persistent inflammatory response secondary to this implantation is frequently observed, leading to a strong discomfort and chronic pain in the patients. In many cases, an additional surgical intervention is needed to remove the mesh.

This study shows that mesenchymal stem cells and their exosomes, combined with a fibrin sealant, can be used for the successful fixation of these meshes. This new therapeutic approach, assayed in a murine model of incisional hernia, favors the modulation of the inflammatory response towards a less aggressive and pro-regenerative profile

For further information: DOI: https://doi.org/10.1016/j.actbio.2018.02.014.

 

Read More

Fabry disease awareness month, April

The Fabry International Network (FIN) association established the month of April as the “month of Fabry” to raise awareness and educate about this disease, a rare, progressive and with multi-organ involvement pathology.

Fabry Disease is one of several dozen Lysosomal Storage Disorders that interfere with the body’s ability to break down specific fatty substances. It is a rare disease and because the rate of occurrence is less than 1 in 200,000, it is considered as one of the many “Orphan” diseases. It is more common in women, but it occurs with greater severity in men.

Fabry disease is a metabolic disease that is produced by a deficiency of the ysosomal enzyme Alpha galactosidase. It is transmitted on the X chromosome. Fabry affected patients are missing alpha-galactosidase A (alpha-gal A) which results in sugars and fatty acids (Gb3) accumulating in the cells throughout the body and impairs the function of several major organs including the kidneys and heart. In 2001, enzyme replacement therapy appeared when the alpha-galactosidase protein (alpha- and beta-agalsidase) was synthesized in the laboratory using genetic engineering techniques. This treatment is injected into patients every 15 days to replenish the deficit levels of this enzyme and stop the progression of the disease.

CIBER-BBN, partner of NANBIOSIS, leads the European project Smart4fabry funded by the Horizon 2020 program, which will be developed through a consortium formed by 14 partners from 5 different countries. The CIBER-BBN coordinates the project through the participation of four of its groups that coordinate four units of NANBIOSIS (U1.Protein Production Platform (PPP), U3. Synthesis of Peptides Unit, U6. Biomaterial Processing and Nanostructuring Unit and U20. In Vivo Experimental Platform.) In addition, the consortium is formed by the University of Aarhus (Denmark), Technion Israel Institute of Technology (Israel), Joanneum Research (Austria), Biopraxis Research AIE (Spain), the spin off Nanomol Technologies SL (Spain) ), BioNanoNet (Austria), Drug Development and Regulation SL (Spain), the Covance Laboratories LTD group (UK), and Leanbio SL (Spain) Smart-4-Fabry has been conceived and developed to obtain a new nanoformulation of GLA, that will improve the efficacy and toleration of the treatment with non-formulated GLA. The final benefit will be seen as a considerable reduction on the Fabry disease treatment cost and a substantial improvement in the life-quality of Fabry disease patients.

Fabry International Network, FIN was established in 2005, as a non-for-profit organization registered in The Netherlands. The primary aim of the project is to facilitate collaboration between patient organizations around the world to support those affected by Fabry disease

FIN is connected to over 45 countries around the world. Membership is free and open to any National Patient Organization in which Fabry patients are represented. The National Fabry Disease Foundation – USA, for April 2018 Fabry Disease Awareness Month, have been providing an educational or information post on their Facebook page, every day of the month in April. The NFDF also distributed their My Health Handbook kit  and, so far, distributed about 700 kits to individuals with Fabry disease. Fabry Australia have a new website and they are also running a new social media campaign. Fabry Support & Informatie Groep Nederland, FSIGN, since 2005  has organized every first Saturday of April (in the Fabry Awareness Month April) to be the Fabry women’s day. Japan Fabry Disease Patients and Family Association, in awareness month JFA held an open seminar at Fukuoka University Medical hall with lectures on three major topics: Newborn Mass Screening, Current Treatments and Employment and Clinical Genomics. In Spain the Fabry patient organization are the Spanish Fabry MPS Association

 

The Fabry International Network will cellebrate the 6th Fabry Expert Meeting on
8th – 10th June 2018 at the Vilnius Grand Resort, Ežeraičių g. 2, Ežeraičių km., Avižienių sen., Vilniaus raj., LT-14200, Lietuva.

DRAFT Full Program

 

Read More

Nora Ventosa, Scientific Director of NANBIOSIS U6, presented the Smart4Fabry project to the compressed fluids community

Last  25th April, Nora Ventosa, Scientific Director of NANBIOSIS U6. Biomaterial Processing and Nanostructuring Unit, presented Smart4Fabry project to the compressed fluids community at the 12th International Symposium on Supercritical Fluids in Antibes, France.

This event is held every three years, gathering investigators from all domains with the aim to promote knowledge and applications of Supercritical Fluids.

According to the ISASF, International Society for Advancement of Supercritical Fluids, “a fluid is called “supercritical” when both its pressure and temperature are over its critical pressure and temperature. It is monophasic and exhibits specific properties, different from those of liquids and gases. Supercritical fluids have a high solvent power vis-à-vis many compounds, at the difference with compressed gases. This solvent power can be easily modified by changing the pressure, what permits to design very selective processes leading to high-quality products”.

 

 

Read More

Robust Organic Radical Molecular Junctions Using Acetylene Terminated Groups for C–Au Bond Formation

Jaume Veciana, Scientific Director of NANBIOSIS is co-author of the publication “Robust Organic Radical Molecular Junctions Using Acetylene Terminated Groups for C–Au Bond Formation” by “Journal of the American Chemical Society”.

For further information:

J. Am. Chem. Soc.2018140 (5), pp 1691–1696

Read More

Two Units of NANBIOSIS participates in the CIBERONC – CIBER-BBN collaboratives projects

Scientists from two NANBIOSIS units participate in two of the three projects selected in the Call CIBER-BBN / CIBERONC.

On April 13, the 1st CIBERONC – CIBER-BBN Collaborative Projects Forum took place at the National School of Health (Carlos III Health Institute). The purpose of the event was to carry out the resolution of the call for collaborative seed projects between the two areas.

During the forum, 12 proposals for collaborative projects were presented, encompassed in four thematic sessions: new nano-devices, new strategies for 3D culture, phototherapy and drug release. All the proposals included the application of some of the latest innovations in the fields of bioengineering, biomaterials and nanomedicine to try to respond to a clinical oncological need.

 

Josep Samitier, Scientific Director of NANBIOSIS Unit 7 , together with Rosa Noguera of CIBERONC, coordinates the project “3D models in vitro for the studies of mechanotherapy in neuroblastoma“. This project addresses a very novel topic of undoubted scientific interest: the effect of the physical properties that the extracellular matrix contributes to the progression and treatment of tumors. In addition, the project has a high translational value and could be applicable not only to neuroblastoma but to other types of tumors and the general metastatic process.

The groups led by Jaime Veciana, Scientific Director NANBIOSIS and of NANBIOSIS unit 6, toguether with Joaquín Arribas of CIBERONC, will develop the project  “Artificial lymphatic nodes for the immunotherapy of cancer (ALYCIA)” coordinated by the researchers Cristina Bernadó (CIBERONC) and Judit Guasch ( CIBER-BBN). This project offers the possibility of studying the role of immune cells with a more efficient system for obtaining T cells, controlling the possible immune response that can be generated by inoculating artificial lymph nodes. It is an innovative project, with great potential and many expectations

Further information

Read More

“Smart-4-Fabry”: European project focused on the Fabry rare disease, participated by 4 units of NANBIOSIS

  • Smart-4-Fabry is a project coordinated by CIBER-BBN, funded by the European Commission within the Horizon 2020 Research and Innovation program with € 5.8 M for 4 years, which aims to develop a new nanomedicine for the treatment of the Fabry rare disease.

 

  • Fabry disease is a rare disease belonging to the group of lysosomal storage disorders, with a global incidence of 1:5,000 – 1:10,000, representing a priority health problem at European level.

 

The European project “Smart-4-Fabry”, is coordinated by CIBER-BBN, specifically by NANOMOL group at ICMAB-CSIC (Dr. Nora Ventosa) and the Biomaterial Processing and Nanostructuring Unit (U6) of  ICTS “NANBIOSIS”, and it also counts with the participation of NANBIOSIS Units U1 Protein Production Platform (PPP), U3 Synthesis of Peptides Unit, and U20 In vivo Experimental Platform.

Fabry disease is an inherited genetic disorder of the lysosomal storage group, which affects many organs and parts of the body, as it is caused by the accumulation of a lipid in the lysosomes of the cells, altering their functions and leading to cell death. This accumulation is due to the lack of an enzyme, α-Galactosidase A (GLA). The symptoms are many: limb pains, stains on the skin, problems with sweating, blurred frontal vision, gastrointestinal problems, loss of hearing, etc. In the long term it can cause renal failure, and heart and central nervous system problems.

Patients can lead a normal life with the current treatment called “enzyme replacement therapy”, where GLA is administered intravenously to patients. However, this treatment exhibits several drawbacks, related to a high instability, high immunogenicity or low efficacy of this molecule crossing cell walls. The development of a new treatment for this disease, as well as for other rare diseases, has become a priority challenge within the European program H2020.

Smart-4-Fabry, acronym for “Smart functional GLA-nanoformulation for Fabry disease”, was born with the idea of ​​obtaining a new nanoformulation of GLA that will improve the efficacy and tolerance of the existing treatments. The project will advance from experimental proof of concept, to the preclinical regulatory phase. The ultimate goal is to reduce the treatment cost and to improve the quality of life of patients with Fabry disease.

Smart-4-Fabry, involves the participation of fourteen partners from five different countries from academia and industry. The consortium is formed by: Network of Biomedical Research Centers: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) with the NANOMOL group at the Institute of Materials Science of Barcelona (ICMAB-CSIC), the Drug Delivery and Targeting Group at the Vall d’Hebron Research Institute (GDLF-VHIR), the Peptide Synthesis Unit at the Barcelona Science Park (UQC-PCB), and the Biotechnology and Biomedicine Institute of the Autonomous University of Barcelona (IBB-UAB) (Spain); Aarhus University (Denmark); Technion Israel Institute of Technology (Israel); Joanneum Research (Austria); Biopraxis Research AIE (Spain); the spin off Nanomol Technologies SL (Spain); BioNanoNet (Austria), Drug Development and Regulation SL (Spain), the Covance Laboratories LTD (UK) group; and Leanbio SL (Spain).

For further information: http://smart4fabry.eu/

 

 

Read More

NANBIOSIS ICTS invites groups and companies to discuss Smart Biomaterials and devices for Drug Delivery

On February 22nd, the National School of Health of the Carlos III Health Institute hosted the forum on Smart Biomaterials and biomedical devices for applications in drug delivery and regenerative medicine, organized by the ICTS Nanbiosis, an infrastructure shared by the CIBER-BBN and the Center of Minimally Invasive Surgery Jesus Usón (CCMIJU). This is the first groups/companies meeting organized by Nanbiosis, in which about 70 B2B meetings  were held.

The meeting brought together about 40 participants from 14 research groups (from the CIBER-BBN and the CCMIJU) and 10 companies, which discussed the latest advances in the research lines developed by the groups and platforms of Nanbiosis and on the needs and demands of the industry in smart biomaterials and devices for targeted drug delivery and regenerative medicine.

Jesus Izco, Coordinator of Nanbiosis, presented the new Cutting-Edge Biomedical Solutions“, soon available on the ICTS website. These are integrated solutions to advanced challenges in nanomedicine, biomaterials, medical device, and diagnostic that can be developed by several units under a  one-stop shop model, optimized with the experience and scientific and technical knowledge of the research groups of excellence that manage the involved units. Some of the Cutting-edge biomedical solutions presented in the meeting were preclinical validation of biomaterials, mechanical and surface characterization, biocompatibility and studies of biofilm formation and infections.

The CIBER-BBN prsentations were: “Instructive materials for regenerative medicine” by Miguel Ángel Mateos (NANBIOSIS U5 IP: Elisabeth Engel); “Molecular biomaterials for drug delivery and biomedical applications” byNathaly Veronica Segovia (NANBIOSIS U6 / IP Jaume Veciana and Nora Ventosa); “Advances with micro-nano technologies for in vitro devices and point of care” by Rosa Villa (NANBIOSIS U8 ); “Development of new dosage forms for advanced therapies based on new biomaterials” by José Luis Pedraz (NANBIOSIS U10); “Contact lenses functionalized for the prevention of corneal infections” by Jordi Esquena (NANBIOSIS U12 / IP Carlos Rodríguez); “Combined in-silico and in-vitro models of the cell microenvironment and drug delivery effects in cancer and tissue engineering applications” by Fany Peña (NANBIOSIS U13 / IP Miguel Á. Martínez); “Surface of the biomaterial: the first contact with our body” by  Marisa González (NANBIOSIS U16 ); “Use of biomaterials for the repair of soft tissue defects” by Bárbara Pérez Khöler (NANBIOSIS U17 / IP J M. Bellón and Gemma Pascual); “Controlled release systems based on mesoporous materials with molecular doors for applications in therapy and diagnosis” by Ramón Martínez Máñez (NANBIOSIS U26); “New intelligent devices and biomaterials for the treatment of pathologies of the retina and the nervous system” (Eduardo Fernández); and “Near-infrared responsive scaffolds for biomedical applications” (Nuria Vilaboa).

On the part of the CCMJU, the presentations were the following: “Application of Mesenchymal Stem Cells in preclinical models for surgical and cardiovascular research” by Javier García Casado (NANBIOSIS U14); “Regenerative medicine in animal models of cutaneous healing and diabetic models” by Beatriz Moreno (NANBIOSIS U19); “Preclinical studies of biomaterials” by Idoia Díaz-Güemes (NANBIOSIS U21 /IP: FM Sánchez Margallo); “Porcine model of myocardial infarction as a translational research platform in regenerative medicine” by Verónica Crisóstomo (NANBIOSIS U24).

In the turn of the companies, they presented some collaboration opportunities AJL, i-Vascular, Praxis Pharmaceutical, Technical Proteins Nanobiotechnology and REGEMAT 3D; and they also participated in the Rovi, Viscofan, Biomag and Biogelx Laboratories forum.

These meetings, where links are established between research groups and companies, address issues of business and scientific interest, allowing direct contacts between researchers and business managers.

Read More

NANOMOL, Research Group Coordinator of Unit 6 of NANBIOSIS, accredited with TECNIO certification

NANOMOL, the research group coordinating ICTS “NANBIOSIS” Unit 6, has been accredited with the TECNIO certification as a Technology Developer Organization, until 2019. This TECNIO certification was created by the Government of Catalonia, through ACCIÓ. This certification supports the most qualified agents involved in technology transfer processes, allows companies to access advanced R&D and develop new products and services, and increases the scope of technology projects by finding the most suitable technology partners & suppliers.

About Nanomol (ICMAB-CSIC/CIBER-BBN)

NANOMOL is a research group depending on the Institute of Material Science of Barcelona from CSIC, with wide expertise and recognized excellence in the synthesis, processing and study of molecular and polymeric materials with chemical, electronic, magnetic and biomedical properties. NANOMOL is also a member of Biomedical Research Networking center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) and of the technology transfer network TECNIO from ACC1Ó-Generalitat de Catalunya. The development by Nanomol of the different prototypes of nanocapsules will be performed in the ICTS “NANBIOSIS”, more specifically by the Biomaterial Processing and Nanostructuring Unit (U6) of the CIBER in Bioengineering, Biomaterials & NanomedicIne located at the ICMAB-CSIC.

Read More

Posters presentation by NANBIOSIS Units in CIBER-BBN ANNUAL CONFERENCE 2017

Last 13 and 14 of November, CIBER-BBN  has celebrated its 11th Annual Conference in Hotel Santemar in Santander. In this conference there was a poster session with the participation of the following Units of NANBIOSIS. Special mention deserves Unit 1 with Neus Ferrer as Director and  Paolo Saccardo as Coordinator (in the picture):

Posters:

U1. Protein Production Platform (PPP):

Engineering protein complexes as nano- or micro-structured vehicles or drugs for human and veterinary medicine. Ugutz Unzueta, Naroa Serna, Laura Sánchez-García, José Vicente Carratalá, Olivia Cano-Garrido, Mercedes Márquez, Paolo Saccardo, Rosa Mendoza, Raquel Díaz, Héctor, López-Laguna, Julieta Sánchez, Anna Obando, Amanda Muñoz, Andrés Cisneros, Eric Voltà, Aida Carreño, José Luis Corchero, Neus Ferrer-Miralles, Esther Vázquez, Antonio Villaverde.

Units  U1. Protein Production Platform (PPP) and U18. Nanotoxicology Unit:

Intrinsic functional and architectonic heterogeneity of tumor-targeted protein nanoparticles. Mireia Pesarrodona, Eva Crosa, Rafael Cubarsi, Alejandro Sanchez-Chardi, Paolo Saccardo, Ugutz Unzueta, Fabian Rueda, Laura Sanchez-Garcia, Naroa Serna, Ramón Mangues, Neus Ferrer Miralles, Esther Vázquez, Antonio Villaverde.

Units U3. Synthesis of Peptides UnitU6. Biomaterial Processing and Nanostructuring Unit, and U20. In Vivo Experimental Platform:

Synthesis of different length monodisperse COL-PEG-PEPTIDE to increase biodisponibility of multifunctional nanovesicles for Fabry’s desease. Edgar Cristóbal-Lecina; Daniel Pulido; Solène Passemard; Elizabet González-Mira; Jaume Veciana; Nora Ventosa; Simó Schwartz; Ibane Abasolo; Fernando Albericio and Miriam Royo.

Units U13. Tissue & Scaffold Characterization Unit and U17. Confocal Microscopy Service::

Preclinical behavior of medium-chain cyanoacrylate glue with two different surgical application forms for mesh fixation in abdominal wall repair. Gemma Pascual, Bárbara Pérez-Köhler, Marta Rodríguez, Claudia Mesa-Ciller, Ángel Ortillés, Estefanía Peña, Begoña Calvo, Juan M. Bellón.

Units U27. High Performance Computing and U8. Micro – Nano Technology Unit:

Inspiration and Expiration Dynamics in Acute Emotional Stress Assessment. Javier Milagro, Eduardo Gil, Jorge M. Garzón-Rey, Jordi Aguiló, Raquel Bailón.

U5. Rapid Prototyping Unit:

Poly-DL-lactic acid films functionalized with collagen IV as carrier substrata for corneal epithelial stem cells. Ana de la Mata, Miguel Ángel Mateos-Timoneda, Teresa Nieto-Miguel, Sara Galindo, Marina López-Paniagua, Xavier Puñet, Elisabeth Engel, Margarita Calonge.

U6. Biomaterial Processing and Nanostructuring Unit:

Strategy for engineering myoglobin nano-traps for biomedical sensing technology. E. Laukhina, O. V. Sinitsyna, N. K. Davydova, V. N. Sergeev, A. Gomez, I. Ratera, C. Blázquez Bondia, J. Paradowska, X. Rodriguez, J. Guasch, Jaume Veciana.

Structure and nanomechanics of quatsome membranes. B. Gumí-Audenis, L. PasquinaLemonche, J.A. Durán, N. Grimaldi, F. Sanz, J. Veciana, I. Ratera, N. Ventosa and M.I. Giannotti

U7. Nanotechnology Unit:

Bioreceptors nanostructuration study for early detection of Alzheimer. José Marrugo, Dr. Samuel Dulay, Dr. Mònica Mir, Prof. Josep Samitier.

RGD dendrimer-based nanopatterns promote chondrogenesis and intercellular communication for cartilage regeneration. Ignasi Casanellas, Anna Lagunas, Iro Tsintzou, Yolanda Vida, Daniel Collado, Ezequiel Pérez-Inestrosa, Cristina Rodríguez, Joana Magalhães, José A. Andrades, José Becerra, Josep Samitier.

Long-range electron transfer between redox partner proteins. Anna Lagunas, Alejandra GuerraCastellano, Alba Nin-Hill, Irene Díaz-Moreno, Miguel A. De la Rosa, Josep Samitier, Carme Rovira, Pau Gorostiza.

U8. Micro – Nano Technology Unit:

Miniaturized multi-sensing platform for pH and Dissolved Oxygen monitoring in Organ-On-aChip systems. M. Zea, A. Moya, I. Gimenez, R. Villa, G. Gabriel.

Electrochemical characterization of SWCNTs based microelectrodes fabricated by inkjet printing. M. Mass, A. Moya, G. Longinotti, M. Zea, M. Muñoz, E. Ramon, L. Fraigi, R. Villa, G. Ybarra, G. Gabriel.

U9. Synthesis of Nanoparticles Unit:

In vivo imaging and local persistance of polymeric micro- and nanomaterials labelled with the near infrared dye IR820. Isabel Ortiz de Solórzano, Gracia Mendoza, Inmaculada Pintre, Sara García-Salinas, Víctor Sebastián, Vanesa Andreu, Marina Gimeno, Manuel Arruebo.

U10. Drug Formulation:

Cationic nioplexes-in-polysaccharide-based hydrogels as versatile biodegradable hybrid materials to deliver nucleic acids. Santiago Grijalvo, Adele Alagia, Gustavo Puras, Jon Zárate, Judith Mayr, José Luis Pedraz, Ramon Eritja

U12. Nanostructured liquid characterization unit:

Perfluorocarbon-loaded Nanocapsules from Nano-emulsion Templates as Microbubble Precursors for Biomedical Applications. G. Calderó, A. González, M. Monge, C. Rodríguez-Abreu, M.J.García-Celma, C. Solans.

Biodistribution study of polymeric drug-loaded nanoparticles in murine model. Marta Monge, Aurora Dols, Stephane Fourcade, Aurora Pujol, Carlos Rodríguez-Abreu, Conxita Solans.

U16. Surface Characterization and Calorimetry Unit:

Behavior and a comparative study between tantalum and titanium alloy implant surfaces against bacterial adhesion. M.A. Pacha-Olivenza, M.L. González-Martín.

Bacterial adhesion on calcium ion-modified titanium implant surfaces. M.A. Pacha Olivenza, R. Tejero, M. Delgado-Rastrollo, M.L. González-Martín.

Bioactive coatings to promote tissue regeneration and ingrowth into 3D custom-made porous titanium endoimplants (COATREG-3D). Santos-Ruiz L; Granados JF; Ruiz F; Yáñez JI; González A; Cabeza N; Vida Y; Pérez-Inestrosa E; Izquierdo-Barba I; Vallet-Regí M; Rubio J; Orgaz F; Rubio N; González ML; Peris JL; Monopoli D; Becerra J.

U17. Confocal Microscopy Service:

Subcutaneous implantation of a biodegradable apatite/agarose scaffold: biocompatibility and osteogenesis characterization in a rat model. Natalio García-Honduvilla, Gemma Pascual, Miguel A. Ortega, Alejandro Coca, Cynthia Trejo, Jesús Román, Juan Peña, María V. Cabañas, Julia Buján, and María Vallet-Regí.

U25. NMR: Biomedical Applications I:

Dual T1/T2 NCP-based novel contrast agents for brain tumor MRI: a preclinical study. Suarez, S; Arias-Ramos, N; Candiota, AP; Lorenzo, J; Ruiz-Molina, D; Arús, C; Novio, F.

Metronomic treatment in immunocompetent preclinical GL261 glioblastoma: effects of cyclophosphamide and temozolomide. Ferrer-Font, L; Arias-Ramos, N; Lope-Piedrafita, S; Julià- Sapé, M; Pumarola, M; Arús, C; Candiota, AP.

U26. NMR: Biomedical Applications II:

Gated nanodevices for innovative medical therapies. Maria Alfonso, Irene Galiana, Beatriz Lozano, Borja Diaz de Greñu, Cristina de la Torre, Andrea Bernardos, Sameh El Sayed, Daniel MuñozEspin, Miguel Rovira, José Ramón Murguía, Manuel Serrano, Ramón Martínez-Máñez.

NANOPROBE: Gated sensing materials and devices for the detection of infectious diseases and urological cancer. Ángela Ribes, Luís Pla, Sara Santiago-Felipe, Alba Loras-Monfort, M.Carmen Martínez-Bisbal, Elena Aznar, Guillermo Quintás-Soriano, José Luis Ruiz-Cerdá, María Angeles.

 

 

 

Read More

Nanomedicine applied to Dermatology by Almirall, Leitat Technology Center & NANOMOL (NANBIOSIS U6)

NANOMOL (ICMAB-CSIC), a research group member of ICTS “NANBIOSIS”, more specifically of the Biomaterial Processing and Nanostructuring Unit (U6), announced today the launch of Nano4Derm, a research project in collaboration with Almirall, S.A and Leitat Technology Center, focused in nanomedicine applied to treat dermatological diseases. Within the framework of this research project, new innovative formulations containing nanoencapsulated active ingredients will be developed for the topical treatment of inflammatory skin conditions, such as Acne and Psoriasis.

Nano4Derm involves the development and physico-chemical and biological characterisation of nanocapsules containing active ingredients, and the generation of scalable formulation prototypes for manufacturing nanoformulations suitable for clinical trials. These innovative formulations will address current unmet needs and challenges, such as antimicrobial resistance, and provide improved topical treatments for Acne and Psoriasis, in terms of side effects, instability of active ingredients, and skin penetration.

Under the terms of the agreement, ICMAB-CSIC and Leitat research centers will be in charge of developing the different prototypes of nanocapsules containing the active ingredients while Almirall will be responsible for the development of formulations containing the encapsulated actives. Furthermore, Almirall and Leitat will evaluate in preclinical studies both the new nanocapsules and formulations in order to select the best solution to address the unmet medical needs in the topical treatment of Acne and Psoriasis.

This agreement will lead to the development of two types of nanocapsules: Quatsomes and Polymeric Nanocapsules. Quatsomes are lipid nanoparticles with higher colloidal stability than liposomes, which favors the production of high quality, pharmaceutical formulations. They are obtained from the DELOS-SUSP, a technology developed by researchers from the Nanomol group (ICMAB-CSIC) based on the use of supercritical fluids such as CO2. This technology has advantages over other manufacturing methodologies in terms of homogeneity and scalability, as it replaces the use of organic solvents by green solvents. Polymeric Nanocapsules are developed by the Leitat Technology Center, and provide versatility to the project as they can be designed with different drug release profiles depending on the needs being addressed.

This project is funded by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) through the announcement of the State Program for R&D&i (2016), orientated to the Society Challenges, modality RETOS-Collaboration 2016, and co-financed by FEDER funds from the European Commission.

 

About Nanomol (ICMAB-CSIC)

NANOMOL is a research group depending on the Institute of Material Science of Barcelona from CSIC, with wide expertise and recognized excellence in the synthesis, processing and study of molecular and polymeric materials with chemical, electronic, magnetic and biomedical properties. NANOMOL is also a member of Biomedical Research Networking center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) and of the technology transfer network TECNIO from ACC1Ó-Generalitat de Catalunya. The development by Nanomol of the different prototypes of nanocapsules will be performed in the ICTS “NANBIOSIS”, more specifically by the Biomaterial Processing and Nanostructuring Unit (U6) of the CIBER in Bioengineering, Biomaterials & NanomedicIne located at the ICMAB-CSIC.

 

About Leitat

Leitat is a multisectoral private technological center whose mission is to collaborate with companies and other entities to create economic, social and sustainable value, through R+D+2i projects and technological processes from innovation and creativity. Leitat is a brand of the private entity Acondicionamiento Tarrasense and is recognized by the Generalitat de Catalunya (ACCIÓ) and by MINECO.

The Division of Nanomedicine and nanobiosensors of Leitat develops nanosystems for therapeutic application in order to solve specific problems in safety and, absorption issues and improvement of the efficacy of some API. In addition, related to diagnosis the group develops nanoparticles for specific recognition of analytes for the improvement of the sensitivity and signal amplification of biosensor systems.

The Efficacy and Safety Unit of Leitat also participates in Nano4Derm project, which has extensive experience in the development and application of in vitro models for the toxicological and efficacy evaluation of diverse natural products, from the pharmaceutical, chemical, cosmetics and food industries. In the pharmaceutical sector, the Unit acts as a strategic provider in Drug Discovery and pharmaceutical development processes. In recent years this unit has been involved in the development and biological characterisation of micro- and nano-delivery systems for topical application.

 

About Almirall

Almirall is a global pharmaceutical company with a strong focus in Dermatology and Aesthetics with the mission of providing valuable medicines and medical devices to you and future generations. Our R&D is focused on Dermatology, with a wide range of programs including key indications. Through our innovative products, agreements and alliances, our work covers the entire drug value chain. Almirall is continually growing as a specialist company in a wide range of skin diseases, in order to cover our customers unmet needs.

Founded in 1943, headquartered in Barcelona, Spain, Almirall is listed on the Spanish Stock Exchange (ticker: ALM) and it has become a source of value creation for society due to its vision and the commitment of its long-standing major shareholders. In 2016, its revenues totaled 859.3 million euros and, with more than 2,000 employees, it has gradually built up a trusted presence across Europe, as well as in the US.

Read More