+34 679 490 537info@nanbiosis.com

News U27

News U27

NANBIOSIS U27 researchers working in an App for the early diagnosis of covid-19 through mobile phones

Bsicos group researchers, from the I3A (Engineering Research Institute) of the University of Zaragoza and CIBER-BBN), Dr. Jesús Lázaro, Dr. Eduardo Gil, Dr. Raquel Bailón and Dr. Pablo Laguna, are working on a line of work for the search of solutions for the early diagnosis of Covid-19 cases, through the development of an App for mobile phones.

For almost three years, Dr. Jesús Lázaro, under the supervision of Professor Pablo Laguna, from the resarch group Bsicos, which coordinate Nanbiosis U27 High Performance Computing , have been working on the European project WECARMON (Wearable Cardiorespiratory Monitor) for the development of an ambulatory system that would allow monitoring the cardiac and respiratory rhythm of patients with Clinical Obstructive Pulmonary Disease (COPD) and thus control and predict episodes of worsening of the disease.

However, the current situation of pandemic due to the SARS-CoV-2 coronavirus has led the researchers, with the approval of the European Commission, to temporarily redirect their objective, foccusing their work in search of solutions for the early diagnosis of the covid-19.
The work carried out for patients with a respiratory disease such as COPD could now serve for the early detection of people with symptoms of covid-19, before even having fever, but also for asymptomatic people, since the rapid variation of these parameters is known. in the initial stages of other respiratory conditions. Our researchers will use these cardiac and respiratory parameters, indirect markers of the autonomic nervous system and, therefore, sensitive to the response of the immune system, potentially helping to identify possible cases of covid-19 earlier. A technological tool that could join the fight to control this pandemic.

Jesús Lázaro has recently made a two-year stay at Connecticut University in the United States, partner of the WECARMON project in which he was working with Pablo Laguna. Two other researchers from the Bsicos group, Dr. Raquel Bailón and Dr. Eduardo Gil, have also decided to redirect their lines of research and focus on the SARS-CoV-2 coronavirus. Re-directing research lines with different objectives to join the fight against the coronavirus is a great challenge and shows the relenvance of cutting-edge research to provide answers to the arising challenges in our society.
Jesús Lázaro explains that the application they are working on would allow a pre-selection of people at risk by analysing markers of the autonomic nervous system that would be measured on a mobile phone. ” At this moment, the above-mentioned four researchers have already developed the algorithms for other platforms and they are working now on an App using the technology of the cameras and the flashlight of the mobiles. A sudden change in heart rate variability or an increase in respiratory rate could give a sensitive and early warning, to resort to other more specific diagnostic tests for covid-19, decreasing the latency time, which has been sadly shown key in this pandemic. The developments and validation, those already made and those planned, are being carried out using NANBIOSIS U27 High Performance Computing (I3A-Unizar/ CIBER-BBN)

The WECARMON project is funded by the H2020 Research and Innovation Program of the European Commission. It is part of the Marie Sklodowska-Curie Individual Actions, whose objective is to promote the professional career of young and brilliant researchers, expanding their knowledge through training, stays abroad and internships, in order to help them develop all their potential as researchers.

Related news:

Read More

Wearable Armband Device for Daily Life Electrocardiogram Monitoring

Researchers Dr. Jesús Lázaro and Dr. Pablo Laguna, from Bsicos group, which coordinate Nanbiosis U27 High Performance Computing from I3A -Engineering Research Institute of the University of Zaragoza- and CIBER-BBN, in the framework of the European project WECARMON (Wearable Cardiorespiratory Monitor) are coauthors of the recently published article titeled “Wearable Armband Device for Daily Life Electrocardiogram Monitoring” in the Scientific Journal IEEE Transactions on Biomedical Engineering ( Early Access )

Our long-term wearable armband is evaluated as heart rate monitor with 24h recordings during daily life”, explained Dr. Jesús Lázaro.

A wearable armband electrocardiogram (ECG) monitor has been used for daily life monitoring. The armband records three ECG channels, one electromyogram (EMG) channel, and tri-axial accelerometer signals. Contrary to conventional Holter monitors, the armband-based ECG device is convenient for long-term daily life monitoring because it uses no obstructive leads and has dry electrodes (no hydrogels), which do not cause skin irritation even after a few days. Principal component analysis (PCA) and normalized least mean squares (NLMS) adaptive filtering were used to reduce the EMG noise from the ECG channels. An artifact detector and an optimal channel selector were developed based on a support vector machine (SVM) classifier with a radial basis function (RBF) kernel using features that are related to the ECG signal quality. Mean HR was estimated from the 24-hour armband recordings from 16 volunteers in segments of 10 seconds each. In addition, four classical HR variability (HRV) parameters (SDNN, RMSSD, and powers at low and high frequency bands) were computed. For comparison purposes, the same parameters were estimated also for data from a commercial Holter monitor. The armband provided usable data (difference less than 10% from Holter-estimated mean HR) during 75.25%/11.02% (inter-subject median/interquartile range) of segments when the user was not in bed, and during 98.49%/0.79% of the bed segments. The automatic artifact detector found 53.85%/17.09% of the data to be usable during the non-bed time, and 95.00%/2.35% to be usable during the time in bed. The HRV analysis obtained a relative error with respect to the Holter data not higher than 1.37% (inter-subject median/interquartile range). Although further studies have to be conducted for specific applications, results suggest that the armband device has a good potential for daily life HR monitoring, especially for applications such as arrhythmia or seizure detection, stress assessment, or sleep studies.

The developments are being carried out using NANBIOSIS U27 High Performance Computing (I3A-Unizar/ CIBER-BBN)

The WECARMON project is funded by the H2020 Research and Innovation Program of the European Commission. It is part of the Marie Sklodowska-Curie Individual Actions, whose objective is to promote the professional career of young and brilliant researchers, expanding their knowledge through training, stays abroad and internships, in order to help them develop all their potential as researchers.

Article of reference:

J. Lázaro, N. Reljin, M. B. Hossain, Y. Noh, P. Laguna and K. Chon, “Wearable Armband Device for Daily Life Electrocardiogram Monitoring,” in IEEE Transactions on Biomedical Engineering. 10.1109/TBME.2020.2987759

Read More

Understanding between doctors and engineers: essential to advance in health

Pablo Laguna Lasaosa, New Director of I3A and scientific director of NANBIOSIS U27 High Performance Computing talks about Biomedical Engineering in the radio programm “La Brujula de Aragón” @OndaCero_

Professor of signal and communications, expert of biomedical signals in the cardio vascular domain, Pablo Laguna talks about engineering today and how the relative weight of engineering is nowadays repesented by the information engineering, computer engineering and the treatment of information to be applyed in different domains, new materials and new ways of addressing and solving problems.

For the recently appointed director of the I3A, there is an opportunity in this updated concept of enineering to try to attract the female sector. “In the I3A -says Pablo Laguna- there are a good number of female engineers, pioneer women, of recognized national and international prestige, who make the effort of diffusion so that other women are encouraged to continue their way”.

Doctor Laguna also explains the I3A research which groups forty or fifty research groups in four work domains:

Chemical engineering, what is known as processes and recycling, (recycling, sludge management or new chemical processes to obtain new materials …), with a very close relationship with the recycling industry.

More classic industrial technologies, the mechanical part, where the great chanllenges are in knowledge, in simulations… to give value to companies.

Information and telecommunications technologies, which brings together the technologies of communication, computer science, data management and artificial intelligence.

Engineering applied to the resolution of biological problems, diagnosis of diseases, therapy … interdisciplinarity and understanding between the doctor and the engineer are nowadays essential to advance in the field of health.

To follow the interview in spanish: from min 13:15

Read More

Pablo Laguna, new director of the Aragon Engineering Research Institute

Pablo Laguna Lasaosa, Scientific Director of Unit 27 High Performance Computing has been elected new director of the Aragon Engineering Research Institute (I3A).

Pablo Laguna Lasaosa, Professor of Signal Theory and Communications at the School of Engineering and Architecture (EINA) of the University of Zaragoza, develops its research activity in the field of signal processing, particularly applied to biomedical applications. Laguna is co-author of more than 150 research articles on this subject, more than 10 book chapters, more than 300 international conference documents and director of 15 doctoral theses. He has led a good number of projects on the interpretation of biomedical signals, especially in the cardiovascular domain, most of them with international collaborations with clinical centers, academia and engineering companies.
Proff Laguna holds some international scientific responsibilities as a member (2008-2019) and president (2015-2018) of the board of directors of the Computing in Cardiology conference, as editor of the Digital Signal Processing (Eurasip) and Medical and Biological Engineering (Springer), In addition to organizing different scientific conferences. Select member (fellow) of the Institute of Electrical and Electronics Engineers (IEEE), of the European Alliance for Medical and Biological Engineering & Science (EAMBES) and of the International Academy of Medical and Biological Engineering (IAMBE). He is co-author, together with Dr. L. Sörnmo, of the book Bioelectrical Signal Processing in Cardiac and Neurological Applications (Elsevier, 2005), considered a reference in his field.
Within the field of university management and research, Professor Laguna has been a member of I3A since its inception, deputy director of International Relations of EINA (1999-2002), principal investigator of the Biomedical Signal Interpretation and Computational Simulation (BSICoS) group of the I3A, coordinator of the Biomedical Engineering division of the I3A (2000-2011) and its deputy director, responsible for the Master in Biomedical Engineering (2003-2010) and of the Doctoral Program in Biomedical Engineering of the I3A since its creation in 2002 until the present. He has also been the scientific director of the Network Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine CIBER-BBN (2011-2015), where he is still a member.
His work program as director of the I3A over the next four years will focus on this important institute of the University of Zaragoza advancing as a reference structure for quality research, multidisciplinary and with a vocation to transfer its results to society.

Read More

The University of Zaragoza, in the elite of the 500 best universities in the world

The Academic Ranking of World Universities (ARWU), known as
Shanghai Ranking, which was made public on August 15, once again places the University of Zaragoza among the elite of the 500 best universities in the world.

This indicator organizes up to 20,000 university centers worldwide. Among the keys that have been able to positively influence the results of the research, according to the Vice Chancellor for Prospect, Sustainability and Infrastructure of the University of Zaragoza, Francisco Serón, are the increase in public campus funding for four years as well as the quality of their Scientists.

The University of Zaragoza houses three of NANBIOSIS Units:

U9 Synthesis of Nanoparticles Unit, led by Jesús Santamaría and Gema Martínez

U13 Tissue & Scaffold Characterization Unit, led by Miguel Ángel Martínez Barca and Fany Peña

U27 High Performance Computing , led by Pablo Laguna

Since 2003, every August, the Academic Ranking of World Universities (ARWU), known as “Shanghai Ranking,” is published, one of the international reference studies to compare higher education institutions. The ranking selects the 1,000 best educational institutions from a global point of view, among the 20,000 higher education centers that exist.

It is possibly the most famous and most recognized university analysis that values the quality of institutions in the generation of knowledge. The research community respects the results of these rankings because they are based on objective data and their classification is reproducible.

Here you can check the results of the University of Zaragoza in this year’s Shanghai Ranking: http://www.shanghairanking.com/World-University-Rankings/University-of-Zaragoza.html.


Read More

Making the most from Signals in Biomedical applications.

Last week took place on Berlin the EMB Conference 2019, (the 41st  International Engineering in Medicine and Biology Conference) with the overarching theme “Biomedical engineering ranging from wellness to intensive care” counting with plenary keynotes from leading academic and industrial scientists, who presented aspects of innovation and translational engineering in biomedicine.

Pablo Laguna, Scientific Director of NANBIOSIS Unit 27, from CIBER-BBN and I3A-UZ, was invited to give a talk on the topic “Phisiologically Driven Biomedical Signal Processing: making the most of Signals

Pablo Laguna has co-authored more than 150 research papers on this topic, over 300 international conference papers, and has advise 15 Ph.D Thesis. He has lead a broad number of projects on biomedical signal interpretation specially in the cardiovascular domain, most of them with international collaborations at clinical and engineering sites. He is having some international scientific responsibilities, as serving as past-president of the board of directors of Computing in Cardiology conference, editor of the digital signal processing journal (Eurasip), and of the Medical and Biological Engineering and Computing (springer), organizer of different scientific conferences, etc. He is also responsible of the Ph.D. program in Biomedical Engineering at Zaragoza University. He is Fellow of the IEEE. He is, together with L. Sörnmo, the author of Bioelectrical Signal Processing in Cardiac and Neurological Applications, book (Elsevier, 2005)

Read More

NANBIOSIS U27 propose a mew method for assessing nonlinear cardiorespiratory interactions

Researches of NANBIOSIS Unit 27 High Performance Computing, S. Kontaxis, J. Lázaro, E. Gil, P. Laguna, and R. Bailón are the authors of an article recently published by IEEE Transactions Biomedical Engineering

Alternations of cardiorespiratory interactions are related to Autonomic Nervous System (ANS) dysfunction and physiological regulation of the Heart Rate Variability (HRV) in cardiovascular diseases. In this study, a method for assessing nonlinear cardiorespiratory interactions is proposed, quantifying the Quadratic Phase Coupling (QPC) between respiration and HRV. Quadratic cardiorespiratory couplings are studied during a tilt table test protocol on young healthy subjects. Results show a significant reduction of QPC between respiration and HRV during head-up tilt position compared to early supine suggesting that the proposed technique is able to track nonlinear cardiorespiratory couplings during ANS changes.

Article of reference:

S. Kontaxis, J. Lázaro, E. Gil, P. Laguna, R. Bailón (2019)Assessment of Quadratic Nonlinear Cardiorespiratory Couplings During Tilt Table Test by Means of Real Wavelet Biphase, IEEE Transactions Biomedical Engineering. vol. 66, n. 1, pp. 187-198 doi: 10.1109/TBME.2018.2821182

Read More

Quantification of Ventricular Repolarization Variation for Sudden Cardiac Death Risk Stratification in Atrial Fibrillation

ATRIAL fibrillation (AF) is the most prevalent sustained arrhythmia and it has become one of the most important public health issues in developed countries. It is expected to double its incidence by 2030 [1], [2], representing the major cause of hospitalizations in elderlies (≥65 years), together with chronic heart failure

Alba Martín-Yebra and Juan Pablo Martínez, scientists of NANBIOSIS U27 High Performance Computing, have led the research that proves that it is possible to stratity AF patients at risk of sudden cardiac death (SCD) what could help cardologists to implement better solutions.

The computation was performed by the ICTS NANBIOSIS, specifically by the High Performance Computing Unit of the CIBER-BBN at the I3A-University of Zaragoza.  

Atrial fibrillation (AF) rhythm is characterized by an irregular ventricular response, preventing the use of standard ECG-derived risk markers based on ventricular repolarization heterogeneity under this particular condition. In this study, the authors proposed new indices able to quantify repolarization variations in AF patients assessing their stratification performance in a chronic heart failure population with AF. Results showed that patients with enhanced ventricular repolarization variation computed in terms of the proposed indices were successfully associated to a higher sudden cardiac death incidence in our study population. In addition, risk assessment based on the combination of the proposed indices improved stratification performance compared to their individual potential. In conclusion, the study proves that using a simple ambulatory ECG recording, it is possible to stratify AF patients at risk of SCD, which may help cardiologists in adopting most effective therapeutic strategies, with a positive impact in both the patient and healthcare systems

Article of reference:

A. Martín-Yebra, P. Laguna, I. Cygankiewicz, A. Bayés-de-Luna, E. G.
Caiani, J. P. Martínez Quantification of Ventricular Repolarization Variation for Sudden Cardiac Death Risk Stratification in Atrial Fibrillation. IEEE J Biomed Health Inform,  v.. 23, n. 3, pp 1049-
doi: 1057.10 1109/JBHI.2018.2851299

Read More


The VPH Conference 2018 is taking place in Zaragoza 5-7 September offering an exciting program of state-of-the art science & engineering in computational (bio)medicine, ranging from foundational research on multiscale modelling of human (patho) physiology, via underpinning research on data science and infrastructures for the virtual physiological human, to clinical applications with participation of NANBIOSIS U27. High Performance Computing

Esther Pueyo  is charing the Session 3A: Cardiovascular modeling: from simulation to clinical outcome,

Some of the outcomes are presented by Jesús Fernández-Bes:

A Bayesian Filtering methodology to identify key drivers of ventricular repolarization variability (Jesus Fernandez-BesDavid Adolfo Sampedro-Puente and Esther Pueyo) 

Virtual Physiological Human (VPH), refers to the field of integrative mathematical modelling and simulations in the study of human biology and physiology. VPH is a methodological and technological framework to share observations, to derive predictive hypotheses from possible aspects of human physiology or pathology, and to integrate them into a constantly improving understanding of human physiology and pathology, by regarding it as a single system. Currently, the VPH is a worldwide effort to develop next-generation computer technologies to integrate all information available, from genetics to medical images to clinical data for each patient, and generate computer models capable of predicting how the health of that patient will evolve under certain conditions. The VPH is now a well-established worldwide community, with the VPH institute representing it.

Read More

Esther Pueyo, NANBIOSIS U 27, at the 3rd Barcelona VPH Summer School

The 3rd VPH Summer School was held in Barcelona, ​​on June 18-22, 2018.  The VPH Summer School series is co-organized by the Barcelona MedTEch – Pompeu Fabra University and by the Virtual Physiological Human Institute. The Summer School provides a thorough overview and hands-on experience in state-of-the-art Virtual Physiological Human (VPH) research. The event is dedicated to PhD students and junior postdocs who seeks cross dissemination and a guided experience through the use of computer models and simulations to tackle specific clinical problems, not only engineers but also biomedical scientists and medical doctors with an interest in computer modeling and simulation for research and clinical practice. It aims to provide junior engineers and medical doctors with a complete overview of state-of-the-art VPH research, following a complete pipeline from basic science and clinical needs, to model application. The Summer School has the support of the Marie Curie ITN CardioFunXion.

This 3rd edition has focussed on data integration, model verification and validation and 16 international keynote speakers shared their research experience. Esther Pueyo, researcher of NANBIOSIS unit U27. High Performance Computing, spoke in the session of June 22nd dedicated to the subject  of Understanding simulation outcomes, technological transfer, decision and therapy support: Patient-specific modeling, Interpretative machine learning, metamodeling, success and failure stories, giving a very nice presentation of experimental and numerical approaches in multiscale modelling for cardiac ageing.

Read More