+34 679 490 537info@nanbiosis.com

News U27

News U27

The relevance of biomedical signal processing in the understanding of biological systems

Within the framework of NeoCom2021 Jesús Lázaro, researcher of BSICoS group and NANBIOSIS U27 High Performance Computing form CIBER-BBN and I3A-UZ will explain how biomedical signal processing can be used to improve the current understanding of the functioning of biological systems, conditions related to the cardiovascular, respiratory, and autonomic nervous systems, as well as their interactions.

Prof. Lázaro will review the progress of the WECARMON European Project whose objective is the development of a system for long-term monitoring (months / years) of patients with cardiorespiratory diseases.

NEOCOM: As every year, the Territorial Demarcation of the COIT in Aragon and the Association of Telecommunications Engineers of Aragon collaborate with the Association of Telecommunications Students of the University of Zaragoza (AATUZ) in the organization of the NEOcom conferences that bring ICT companies closer to the university field. All talks are broadcasted on live on the AATUZ YouTube channel (without registration)

Jesús Lázaro and Wecarmon Project

Related news:

NANBIOSIS U27 researchers working in an App for the early diagnosis of covid-19 through mobile phones

Wearable Armband Device for Daily Life Electrocardiogram Monitoring

Read More

Electrocardiogram-Derived Tidal Volume During Treadmill Stress Test

Researchers of BSICoS Group and NANBIOSIS ICTS U27 High Performance Computing from CIBER-BBN and I3A-UZ have published a new article in the scientific journal IEEE Transactions Biomedical Engineering. proposing a new method to estimate tidal volume during stress test based only on the electrocardiogram signal.

Electrocardiogram (ECG) has been regarded as a source of respiratory information with the main focus in the estimation of the respiratory rate. Although little research concerning the estimation of tidal volume (TV) has been conducted, there are several ECG-derived features that have been related with TV in the literature, such as ECG-derived respiration, heart rate variability or respiratory rate.

In this work, resarchers exploited these features for estimating TV using a linear model. 25 young (33.4 ± 5.2 years) healthy male volunteers were recruited for performing a maximal (MaxT) and a submaximal (SubT) treadmill stress test, which were conducted in different days. Both tests were automatically segmented in stages attending to the heart rate. Afterwards, a subject-specific TV model was calibrated for each stage, employing features from MaxT, and the model was later used for estimating the TV in SubT.

During exercise, the different proposed approaches led to relative fitting errors lower than 14% in most of the cases and than 6% in some of them. Low achieved fitting errors suggest that TV can be estimated from ECG during a treadmill stress test. The results suggest that it is possible to estimate TV during exercise using only ECG-derived features.

Article of reference:

Milagro, J; Hernando, D; Lázaro, J; Casajús, J A; Garatachea, N; Gil, E; Bailón, R. Electrocardiogram-Derived Tidal Volume During Treadmill Stress Test
IEEE Transactions Biomedical Engineering, 67 (1), 2020. DOI: 10.1109/TBME.2019.2911351

Read More

Outstanding Young Researcher Award at ICESS 2021 to Konstantinos Mountris (NANBIOSIS U27).

Konstantinos Mountris researcher from the BSICoS group of CIBER-BBN and I3A at the University of Zaragoza has been granted the Outstanding Young Researcher Award at the International Conference on Computational & Experimental Engineering and Sciences (ICCES) in relation with the work Radial Point Interpolation Mixed Collocation (RPIMC) Method for The Solution of Reaction-Diffusion Equation in Cardiac Eletrophysiology (for the simulation of myocardial infarction).

This work was already recognized in the Congress of Computing in Cardiology (CinC) held recently where Konstantinos Mountris and Esther Pueyo have received the Maastricht Simulation Award (MSA)Konstantinos Mountris acknowledged the contribution of NANBIOSIS U27 High Performance Computing :“using the HPC services of NANBIOSIS U27 we were able to validate the RPIMC method as a promising alternative to Finite Element Method performing large-scale simulations of myocardial infarction in biventricular swine models

Related news: Understanding human heart behaviour with mathematics and engineering.

Read More

NANBIOSIS at the I3A I Conference – IX Conference of Young Researchers

On December 11 the I I3A Conference will take place (online). This Conference is a meeting whose main focus will be the Young Researchers Conference, which is now in its IX edition, and in which there will be scientific conferences that will complete the program. A day dedicated to highlighting the research work in I3A institute of University of Zaragoza.

The BSiCoS group from I3A and CIBER-BBN, coordinator of NANBIOSIS U27 High Performance Computing will be at the I3A Conference, where participatien in the Young Researchers Meeting:

Pablo Armañac: The capacity of the baroreflex as an identification index of ICU patients prepared for weaning

Cristina Pérez: From the stress test to the prediction of sudden cardiac death using non-invasive markers

Saúl Palacios: Periodic dynamics of repolarization as a predictor of sudden death in patients with chronic heart failure

  • Date: Friday, December 11
  • Time: 9 am – 6 pm
  • Online: Via YouTube

The scheduled agenda for the meeting:

      9.00 – 9.15 Inauguration (Councilor for Science, Research and the Knowledge Society, Maru Díaz; acting vice-rector for Scientific Policy, Blanca Ros; director of I3A, Pablo Laguna

      9.15 – 9.30 “I3A Distinction”

      9.30-10.30 Opening conference by Manuel González Bedia “Overview of Spanish scientific policy”

    10.30-11.30 Youth presentations (2 presentations)

    11.00-12.00 Poster session

    12.00-13.00 Youth presentations (4 presentations)

    13.00-14.00 Lunch

    14.30-15.30 Lecture by Juan Domingo TardósHow to transfer the software resulting from your research?”

    15.30-16.30 Youth presentations (4 presentations)

    16.30-17.30 Closing conference by Elías Cueto “Artificial scientists: teaching robots to do science”.

    17.30-18.00 Delivery of awards, scholarship diplomas and bridge contracts, and “Distincion I3A”:

                                – Awards for the best presentations by young researchers (one per division)

                                – Delivery diploma of recognition of Bridge Contracts

                                – Delivery diploma of recognition of TFM Scholarships

Read More

NANBIOSIS participation in the Technology and business Forum “Technological challenges derived from COVID-19”

The pandemic has led companies and researchers to reorient their plans and projects to meet the demands of society.

Different examples of these new challenges will be seen at the next Technology and Business Forum on Thursday, December 10, covering from new tissues, better masks, diagnostic tests, epidemiological models and clinical equipment … All this, from an analysis both from the perspective industrial and research.

The Technological and Business Forum is organized by the Aragón Engineering Research Institute (I3A), the SAMCA Chair of Technological Development, CEOE-Aragón and the Zaragoza Chamber. On this occasion, it will be held online and it will be an opportunity to talk about technologies and COVID-19, to consider the future after this pandemic, given the impact it has had on society and the economy.

At 12:00 the session on “Contributions from research to different COVID challenges· is scheduled, in which, M. Pilar Lobera. researcher at NANBIOSIS U9 Synthesis of Nanoparticles Unit (from CIBER-BBN and- Institute of Nanoscience and Materials of Aragon -INMA- talks on “Challenges for respiratory protection: types of membranes“·
Moderator: Pablo Laguna, Scientific Director of NANBIOSIS U27 High Performance Computing and Director of the SAMCA Chair of Technological Development and I3A

Read More

The Nanomedicine Revolution

Yesterday, November, 25 took place, within the the program of the Ateneo of the EINA (School of Engineering and Architecture of Aragón), the online conference on “The Revolution of Nanomedicine” by Ramón Martínez Máñez.

The Conference chair, Jesús Martínez de la Fuente, Principal Investigator of the BIONANOSURF group of CIBER-BBN and the Institute of Nanoscience and Materials of Aragón, introduced the guest, Ramón Martínez Máñez, Scientific Director of CIBER-BBN, highlighting “his creativity in the use of his systems and how he combines them with different diagnostic release systems, combining organic chemistry, surface chemistry, applications in biotechnology and giving way to translation and transfer, his works are very unique

Ramón Martínez Máñez, Scientific Director NANBIOSIS unit 26 NMR: Biomedical Applications II, gave a very instructive talke about what is nanotechnology and how nanotechnology revolution has reached the medicine, with current examples of the application of nanomedicines, as well as in the medicine of the future.

After it, a very interesting debate took place in which different issues were discussed, especially in relation to nanomedicine applied to therapy, such as the barriers to generalize the use of nanoparticles in therapy, the current state of implantation of nanoformulated drugs in the market and the advancement of the use of some nanoparticles as polymers or liposomes compared to inorganic nanoparticles, the degree of development of nanoparticles under GLP certification or why cancer is the main target of nanomedicine with a great difference over other pathologies. The audience asked questions that led to the discussion of some more controversial points such as whether it is true that “Big Pharma” does not like nanoparticles, why there is a regulatory vacuum regarding their use and how to solve these problems.

Regarding the diagnosis applications, Ramón Martínez commented that “nanotechnology already has its way open, both in the development of nanoparticles and systems to amplify the signal, based on nanophotonics, resonant rings or other technologies at the nanometric level. The pandemic has highlighted the importance of having rapid detection systems for bio parameters, pathogens, bacteria … We have a lot of knowledge acquired in recent years in these systems and they are currently being developed in a more or less short time, we are truly close to revolutionizing the field of detection“.

Finally, in realtion with the nanomedicine of the future, the questions raised in the debate revolved mainly around nanobots and their state of development or the problems that are emerging in it or the possibility of uniting nanomedicine with artificial intelligence and possible applications.

The Ateneo is an activity of the EINA in collaboration with the Aragón Engineering Research Institute and SAMCA Chair of Technological Development of Aragon, both directed by Pablo Laguna, Scientific Director of Nanbiosis U27 High Performance Computing. Pablo Laguna closed the event thanking Ramón Martínez Máñez and Jesús Martínez de la Fuente for their participation and highlighting the high number of attendees at the conference.

The conference can be followed in Spanish in EINA youtoube channel: https://www.youtube.com/watch?v=Y_Fh1O1VuNU

Anouncing this Conference in the Ateneo EINA, Ramón Martínez Máñez was yesterday interviewed by Aragon Radio. In this case, the interview had the focuss in the “Nanomedicine against COVID” . The podcast can be listen in Spanish here: https://www.cartv.es/aragonradio/podcast/emision/nanomedicina-frente-a-la-covid

Read More


The XXXVII Annual Congress of the Spanish Society of Biomedical Engineering (CASEIB) is taking place between November 25 and 27. This new edition of CASEIB, in virtual format is organized by the CIBER-BBN group of Biomedical Engineering at Valladolid Universitiy, led by Prof. Roberto Sánchez Hornero.

Prof. Laura Lechuga, Scientific Director of NANBIOSIS U4 Biodeposition and Biodetection Unit, member of the advisoty committee of scientific experts (Multidisciplinary Working Group) to the Ministry of Science and Innovation in COVID-19 and coordinator of the European project CONVAT shall participate in the Roundtable I: Biomedical Engineering and COVID-19 November 26, 12:00 h

Researchers of BSICoS Group from CIBER-BBN and I3A-UZ, running NANBIOSIS U27 High Performance Computing, led by Prof. Pablo Laguna, will participate defending their last works:

  • “Delay between QT and RR in stress test records as an indicator of the heterogeneity of ventricular repolarization”. Cristina Pérez, Esther Pueyo, Juan Pablo Martínez, Jari Viik, Pablo Laguna.
  • “Prediction of sudden death in patients with chronic heart failure by studying the periodic dynamics of repolarization”. Saúl Palacios, Iwona Cygankiewicz, Antoni Bayés-de-Luna, Juan Pablo Martínez, Esther Pueyo.
  • “Electrodermal response analysis for the identification of patients with depression”. Marta Martínez, Jesús Lázaro, Spyridon Kontaxis, Pablo Laguna, Eduardo Gil, María Luisa Bernal Ruíz, Sara Siddi, Concepción de la Cámara, Jordi Aguiló, Esther García, Josep María Haro, Raquel Bailón.
  • “In silico characterization of the duration of repolarization and its variability in Type 1 Long QT syndrome under β adrenergic stimulation”. David Adolfo Sampedro-Puente, Fabien Raphel, Jesús Fernández-Bes, Pablo Laguna, Damiano Lombardi, Esther Pueyo
  • “Monitoring of Blood Potassium Concentration in dialysis through changes in the multi-lead morphology of the T wave: Comparison between using the transformation in Periodic and Principal Components”. Flavio Palmieri, Pedro Gomis, José Esteban Ruiz, Dina Ferreira, Alba Martin, Esther Pueyo, Pablo Laguna, Juan Pablo Martínez, Julia Ramírez.

Further information on BSICoS website

On the other hand researcher of NANBIOSIS at JUMISC will present:

  • Study of the influence of the diameter and temperature of the nozzle on the thickness of the filament for bioprinting“. Enrique Mancha, Juan Carlos Gómez Blanco, Alfonso Carlos Marcos Romero, Manuel Matamoros Pacheco, Francisco Miguel Sánchez Margallo, José Blas Pagador Carrasco.
  • Influence of voluntary contractions on the basal sEMG activity of the pelvic floor muscles. M. Albaladejo-Belmonte, M. Tarazona, F.J. Nohales, J. Alberola-Rubio, J. Garcia-Casado
  • 3D Printing Mold Making: Soluble Male Viability for Hollow Artificial Organs Juan Carlos Gómez Blanco, José Blas Pagador Carrasco, Antonio Jesús Rodríguez Fuentes, Alfonso González González, Mara Olivares Marín, Jesús Usón Gargallo, Francisco Miguel Sánchez Margallo

Further information on JUMISC website

Read More

Understanding human heart behaviour with mathematics and engineering.

Researchers from the I3A and the CIBER-BBN at the University of Zaragoza Esther Pueyo and Konstantinos Mountris have been interwiewed at the Radio program “Hoy por Hoy” LA SER in relation with their work from engineering and mathematics to understand the functioning of the heart when it is healthy and when a heart attack occurs, to provide clinical specialists with the tools needed to improve patient care.

They do this through computing in cardiology using the instalations of the ICTS Nanbiosis U27 High Performance Computing Unit, with the creation of a virtual heart that allows the computer to reproduce the electrical activity of a real heart. His line of research advances towards a simpler methodology. Until now, computational simulation required the construction of a geometry that created a mesh, joining different points of that virtual heart. This system was not applicable to the clinical routine, extensive engineering knowledge was needed, but now they have created a new methodology that facilitates that application because it more easily translates an image to a computational model and, therefore, it can be easier to be interpreted in the hospital setting.

It is an innovative advance in this field and its work has already been recognized in the Congress of Computing in Cardiology (CinC) held recently and where they have received the Maastricht Simulation Award (MSA). “The Meshfree Immersed Grid alleviates the necessity for mesh generation and allows eliminating the mesh-related limitationsUsing the HPC services of NANBIOSIS U27 High Performance Computing, – explains Konstantinos Mountris – we were able to validate the Meshfree Immersed Grid method as a promising alternative to Finite Element Method performing large-scale simulations of myocardial infarction in biventricular swine models

Until now, this group of researchers started from a clinical image that they had to divide into small pieces and establish their connection. With this new methodology, this is no longer necessary, it is no longer necessary to build the virtual heart by connecting those small parts to see how it works, but they start from the image itself, a model is built automatically and they are able to see the activity cardiac.

This methodology that unites engineering and mathematics “is applicable to different pathologies of the heart, but in the work that we present, it had been tested against myocardial infarction. Our idea is to test the electrical activity of the heart that has suffered a heart attack ”, explains Konstantinos Mountris, but they also test the activity in a healthy heart.

Transferring the image of a damaged heart to the computer simulation allows us to check what its activity will be like from now on, how it will behave and this can help clinicians in their diagnosis, application of treatments and decision making. It is a method with a great mathematical and engineering load but with a great clinical application, “they are algorithms that could be taken to the clinic and obtain a result from the image that doctors have”, highlights Esther Pueyo, principal investigator of the project European Modelage, in which the work that has just been internationally recognized is framed.

This line of research proposes a method that has different applications, from surgeries to diagnostic tests or treatments. A mathematical model that reproduces how a healthy heart or a heart with areas affected by an arrhythmia or a heart attack works and that can be adapted to each patient.

Modelage is a project that tries to know the aging rhythms of the heart and develop patterns that help prevent arrhythmias are some of the objectives. It is led by Esther Pueyo, a CIBER-BBN researcher in the BSICoS group of the I3A led by Pablo Laguna. It was selected within the first Starting Grant call of the Horizon 2020 program of the European Union in which more than 3,200 proposals competed.

See presentation of the work in the Congress of Computing in Cardiology

Read More

Job offer: FULLY-FUNDED PhD FELLOWSHIP at the University of Zaragoza

BSICoS Group at I3A- University of Zaragoza –NANBIOSIS U27 High Performance Computing offer FULLY-FUNDED PhD FELLOWSHIP

Applications must be submitted before October 27th, 2pm (Spain time).

 Profile of the candidate:
Graduate/Master in Mathematics, Physics, Engineering or related disciplines.

 PhD contract and topic:
A PhD contract (former FPI program) is offered for a PhD position at the Biomedical Signal Interpretation and Computational Simulation (BSICoS) group of the Aragón Institute of Engineering Research, University of Zaragoza.
The PhD thesis is associated with the research grant “Towards improved management of cardiovas-cular diseases by integrative in silico-in vitro-in vivo research into heart’s structure, function and autonomic regulation”, funded by Spanish Ministry of Science and Innovation, with reference PID2019-105674RB-I00.
As part of his/her PhD thesis, the candidate will work on some of the following lines:

  • Processing of signals acquired by patch-clamp and optical mapping as well as electrograms and electrocardiograms.
  • Incorporation into multi-scale computational models of the heart and the autonomic nerv-ous system of all the information extracted from the signals and from additional processing of histological images and molecular biology data.
  • Development of numerical methods for simulation of cardiac activity.
  • Application of artificial intelligence techniques for prediction of abnormalities in heart’s electrical behavior.

 Procedure and deadline for application submission:
Interested candidates should submit an application through the electronic website of the Spanish Ministry of Science and Innovation: https://sede.micinn.gob.es/ayudaspredoctorales/
Application submission will be open from October 13th to October 27th, 2pm (Spain time).

 Full details about the call:

Call for PhD fellowship

Summary of the PhD fellowship program

 Additional information:
Although the candidate should submit his/her application through the electronic website of the Spanish Ministry of Science and Innovation, as indicated above, he/she is advised to send CV and academic transcripts by email to Esther Pueyo (epueyo@unizar.es).
For additional information, please contact Esther Pueyo (epueyo@unizar.es).

Read More

Maastricht Simulation Award to Konstantinos Mountris and Esther Pueyo

Konstantinos Mountris and Esther Pueyo, (NANBIOSIS Unit 27 High Performance Computing), have been awarded with the Maastricht Simulation Award for their participation in the CinC 2020.

Researchers of BSICoS Group, from CIBER-BBN and I3A of Zaragoza University, have participated in the 47 Computing in Cardiology Conference, which took place in Rimini, Italy, during the days 13-16 of September. Alba Martín, was awarded with the Best Remote Poster Presentation for the poster entitled “Model-based characterization of atrial fibrilation episodes and its clinical association“. And the work “Next-generation in-silico Cardiac Electrophysiology through Immersed Grid Meshfree Modelling. Application to Simulation of Myocardial Infarctionby Konstantinos Mountris and Esther Pueyo has been awarded with the CinC Maastricht Simulation Award (MSA).

This work proposes a novel Meshfree Immersed Grid method for cardiac electrophysiology simulation and its application in the simulation of myocardial infarction. Usually, cardiac electrophysiology simulation is performed using mesh-based techniques like the Finite Element Method. Such techniques implicate the generation of a mesh discretization of the domain of interest that can be a time-consuming process, especially for complex anatomical models. The Meshfree Immersed Grid alleviates the necessity for mesh generation and allows eliminating the mesh-related limitations. Using the HPC services of NANBIOSIS U27 High Performance Computing, – explains Konstantinos Mountris – we were able to validate the Meshfree Immersed Grid method as a promising alternative to Finite Element Method performing large-scale simulations of myocardial infarction in biventricular swine models.

The goal of this award (and its $500 prize) is to recognize the best submission to the conference each year on the topic of cardiovascular simulations.

2020 Is the second consecutive edition of the CinC Conference in wich members of Bsicos Group and NANBIOSIS U27 are awarded with the MSA. In 2019 the winner was Violeta Monasterio with the work Influence of the Stimulation Current on the Differences between Cell and Tissue Electrophysiological Simulations.

Read More