+34 620 10 75 37info@nanbiosis.com

News

nanbiosis news

The new official webpage of RED-DM is coordinating research efforts in Myotonic Dystrophy

NANBIOSIS introduces the new webpage of RED-DM, uniting experts to combat Myotonic Dystrophy. Highlighting Ramón Eritja’s group’s pivotal role.

29 February 2024, IQAC-CSIC (Barcelona)

In a significant stride toward addressing the challenges posed by Myotonic Dystrophy, the Translational Genomics Group of the INCLIVA Health Research Institute (associated with the Valencia Clinical Hospital) and the University of Valencia (BIOTECMED Institute) have spearheaded the establishment of the Red Temática Nacional en Distrofia Miotónica tipo 1 (National Thematic Network in Myotonic Dystrophy Type 1). This progressive and degenerative disease, also referred to simply as DM1, is currently incurable and underdiagnosed. In addition, it can lead to muscle weakness, atrophy, arrhythmias, and cognitive deficits. This multidisciplinary network brings together leading research groups in DM1 and the development of oligonucleotide-based therapies (small RNA fragments) at a national level, organized to collaborate cohesively and drive forward the study and development of medications to treat this worrisome condition.

One of the key pieces of this initiative is the prominent role played by the group led by Ramón Eritja, a distinguished researcher affiliated with NANBIOSIS through his Unit 29. Prof. Eritja’s group brings unparalleled expertise in oligonucleotide research to RED-DM. With a proven track record in developing innovative therapies and unique oligonucleotide designs, their pioneering work significantly advances the understanding and treatment of Myotonic Dystrophy, offering hope to countless individuals affected by this debilitating condition.

What is Myotonic Dystrophy?

Myotonic Distrophy Type 1 (DM1), also known as Steinert’s disease, stands as a challenging hereditary muscular dystrophy characterized by myotonia, muscle wasting, and weakness with multiorgan involvement. Its clinical hallmarks include respiratory problems, cardiac arrhythmias stemming from defects in the heart’s muscle conduction system, early-onset cataracts, hypogonadism, insulin resistance, and hypersomnia, among others. It is the most prevalent form of muscular dystrophy appearing in adulthood, affecting approximately one case per 8,000 individuals in European populations.

To know more about DM1, visit the RED-DM webpage.

Introducing the new RED-DM webpage:

The newly launched official webpage of RED-DM serves as a hub for disseminating information, fostering collaboration, and facilitating communication among researchers, clinicians, and stakeholders invested in combating DM1. It provides a platform to showcase ongoing research endeavors, share resources, and promote dialogue to accelerate progress in understanding and treating this complex disease.

Through the concerted efforts of RED-DM and its constituent research groups, including the pivotal contribution of Ramón Eritja’s team, a unified approach to tackling DM1 is being realized. By leveraging collective expertise and resources, RED-DM aims to catalyze advancements in therapeutic interventions and ultimately improve outcomes for individuals affected by this debilitating disease.

For further information and updates on RED-DM’s initiatives and collaborative efforts, visit the newly launched official webpage here.

This article is in the context of Rare Disease Day 2024. To stay up to date, visit our news section here.

Additional information:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our biomedical Solutions, apply here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

The fight against rare respiratory diseases: New hope in detection and treatment

Researchers from IQAC-CSIC advance towards faster detection and treatment of cystic fibrosis and rare respiratory diseases, improving patient outcomes.

28 February 2024, IQAC-CSIC (Barcelona)

Cystic Fibrosis (CF) is a progressive autosomal recessive disease. It is caused by a mutation in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, disrupting its exocrine activity. While CF affects various organs, its impact on the lungs is particularly severe. This disease leads to the accumulation of thick, sticky mucus, obstructing airways and trapping bacteria, resulting in significant infections and extensive lung damage. Consequently, individuals with CF are highly susceptible to respiratory tract infections. In this regard, Pseudomonas aeruginosa and Staphylococcus aureus are among the most prevalent pathogens.

Early detection of P. aeruginosa and S. aureus in CF patients is crucial to eradicate these pathogens before the development of chronic colonization. Moreover, even after the chronic colonization occurs, proper control of the bacterial burden is necessary to minimize progressive lung deterioration. Currently, the gold standard for detecting these bacteria involves conventional bacterial culture methods. However, as in any infectious process, time is of the essence, and these techniques typically take 2 to 3 days to be confirmed. Hence, there is an urgent need to develop faster, more sensitive, and specific diagnostic methods.

In this context, the Nanobiotechnology for Diagnostics (Nb4D) group at the IQAC-CSIC, in which the Unit 2 of NANBIOSIS (CAbS) is integrated, focuses much of its research on bacterial communication systems, specifically Quorum Sensing (QS).

Quorum Sensing is a fascinating mechanism that allows bacteria to react to the presence of other bacteria. In other words, QS regulates bacterial gene expression in response to fluctuations in microbial population density. QS-sensitive bacteria produce and release signaling molecules called autoinducers (AIs). Just the detection of a minimum concentration of AIs triggers radical changes in gene expression, activating processes such as biofilm formation or virulence.

The QS system is well-characterized for both P. aeruginosa and S. aureus. This makes the detection of these AIs, or even QS-regulated virulence factors (VFs) (such as the aforementioned biofilm formation), a promising approach for bacterial identification. As a consequence, by knowing how AIs and VFs work, doctors can predict how an infection may progress. Much like a bacterial molecular fingerprint.

The research team of Nb4D and CAbS.

Thanks to their solid know-how, the Nb4D group has developed specific antibodies against AIs and VFs of both bacterial species. With that under their belt, this group has designed ELISA assays capable of detecting these molecules. Then, using this popular technique, they managed to run detection tests in approximately 2 hours, both in bacterial isolates and sputum human samples.

Additionally, our researchers are evaluating these antibodies as therapeutic agents using cell cultures, using their antibodies to block dangerous VFs and AIs. These studies are yielding promising results in mitigating the cytotoxic effects caused by the aforementioned VFs and AIs.

Detecting Alpha-1-antitrypsin protein

In addressing rare diseases related to the respiratory system, the Nb4D group is also involved in developing a device for detecting Alpha-1-antitrypsin protein. The genetic deficiency of this protein causes damage to the lungs and liver, affecting 1 in every 2500 individuals in Europe. Rapid and highly sensitive detection of Alpha-1-antitrypsin levels should enable immediate treatment initiation, thereby preventing potential complications.

This research line represents an example of clinical cooperation. It involves collaboration with clinical personnel from Hospital del Mar, Hospital Germans Trias i Pujol (Barcelona), and Hospital Son Espases (Mallorca). In addition, the interest has peaked to the point of attracting funding such as State ‘Plan Estatal de I+D+I’, as well as a grant from the ‘Fundació La Marató’ of TV3, among other sources.

Through innovative diagnostic and therapeutic approaches, the Nb4D group is dedicated to improving outcomes for individuals affected by rare respiratory diseases. This involves their work in cystic fibrosis among other conditions, pushing forward the understanding and management of these challenging diseases.

This article is in the context of Rare Disease Day 2024. To stay up to date, visit our news section here.

Additional information:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our biomedical Solutions, apply here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

New upcoming events: The active role of NANBIOSIS in awareness of rare diseases

For Rare Disease Day, we raise awareness through 2 events: 1 in Barcelona (Feb 28) & another in Madrid (Feb 29). Collaboration & research in focus.

28-29 February 2024, Rare Disease Day 2024

NANBIOSIS is actively involved in promoting awareness and understanding of rare diseases, Due to their lower incidence, these conditions are often face neglect in medical research and industrial treatment. To spotlight this crucial issue, NANBIOSIS is pleased to announce its participation in two significant events coinciding with Rare Disease Day celebrations. These events will address various aspects of rare and minority diseases research and treatment.

Event 1: February 28th at Vall d’Hebron, Barcelona

On February 28th, NANBIOSIS will contribute to the Rare Diseases Symposium at Vall d’Hebron Hospital in Barcelona. This event, available for both in-person attendance and online viewing, will commence at 10:00 and feature a series of informative talks until 12:25.

Held at the Auditorium (10th floor) of Vall d’Hebron General Hospital (Pg. de la Vall d’Hebron, 119, Horta-Guinardó, 08035 Barcelona, Spain), the symposium will explore rare diseases across different life stages, with a focus on the role of new technologies in diagnosis and the importance of informed consent.

Members from the group of Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), in which NANBIOSIS Unit 20 is integrated, are proud to be a part of this event.

To read the full programme of the event, click here. To find more information about the event and to follow it online, follow this link.

Researchers from Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT) at Vall d’Hebron, in which NANBIOSIS Unit 20 is integrated.

Event 2: February 29th at CaixaForum, Madrid

The XIII edition of the CIBERER Day “Research is Progressing” will take place on February 29th from 15:30 to 19:30 at the Auditorium of CaixaForum Madrid (Paseo del Prado 36).

Led by Pablo Lapunzina, Scientific Director of CIBERER, this event will showcase the latest advancements from the center. CIBERER, a part of CIBER, which houses CIBER-BBN, one of the three institutions comprising NANBIOSIS. The event will also feature presentations on collaborative initiatives between CIBERER researchers and patient associations, followed by a panel discussion on the role of biobanks in rare disease research.

For more information about his event, including attendance, click here.

These events reflect NANBIOSIS’s ongoing commitment to advancing research and treatment options for rare diseases, highlighting the importance of collaboration in addressing these often overlooked conditions.

To stay up to date, visit our news section here.

Additional information:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our biomedical Solutions, apply here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Women in NANBIOSIS part 4: María Sancho’s journey from nanomaterials to cancer therapy

Our expert in nanocarriers talks about her journey from biotechnology to cancer therapy, an example of passion and perseverance in science.

February 2024, I3A/CIBER-BBN, Zaragoza (Spain)

The silence of the meeting room is only broken by the constant purring of the heating system. A large square table made of dark wood fills the entire room almost completely. Its dimensions are too extensive for anyone to reach its center. One may wonder, how many passionate conversations about the next step to take in countless research projects have been witnessed by these four walls?

The door swings open briskly, and a familiar face crosses the threshold with a smile. We have shared lab bench in the past, and María, with her memory honed by years of dedication to her craft, remembers that brief period of our lives surprisingly well. We greet each other warmly. She radiates energy and passion for what she does.

The interview begins.

Hello María, tell us a little about yourself.

“My name is María Sancho, I studied a Bachelor’s Degree in Biotechnology at the University of Zaragoza, just the second generation after its implementation. I did my bachelor’s thesis at the Institute of Nanoscience and Materials of Aragon (INMA), and this contact with nanotechnology made me decide to continue expanding my training in this field and try to dedicate myself to science and research. Then I did the Master’s in Nanomaterials, the ‘NanoMat’, at INMA, as it complemented my biochemistry-oriented training very well with the materials aspect of the Master’s.

After I finished both my bachelor’s and master’s thesis at INMA, I had the opportunity to apply for (and obtain) a prestigious State doctoral scholarship with Jesús Santamaría as Principal Investigator. This allowed me to do my thesis here in Zaragoza, which I defended in December 2020. For the past three years, I have been in Milan, at the Mario Negri Institute of Pharmacological Research, with Luisa De Cola. Her outstanding work focuses mainly on nanomaterials, different from those I worked on during my thesis, allowing me to train in a highly complementary area.”

So, you’re currently doing your postdoc in… Italy?

“No, no. I just returned last October, once again, to Jesús Santamaría’s group, with the goal of establishing here in Zaragoza as a researcher… if possible (laughs).”

“I am fortunate to be able to devote myself to something I am passionate about. Research is something I enjoy every day.”

—Dr. María Sancho, Researcher at Unit 9.

What motivated you to choose a career as a researcher?

“Ever since I was very young, I’ve been an inquisitive, curious, and creative person. I got into research spontaneously, although it’s true that in my family we always talked about scientific research, my father was a teacher and a geologist himself. Over time I’ve realized that science has a vocational component, it requires a lot of dedication, but it excites me. During my high school studies, I was clear about choosing the scientific path. After finishing high school, I pursued a degree in Biotechnology, which had been implemented in Zaragoza just a year before. During my studies, I witnessed the significant advances of the great nanotechnological revolution of recent years. My interest grew only stronger and I decided to do my doctoral studies.

In 2016, I obtained a prestigious and competitive contract for the so-called University Professor Training State program ‘FPU’ from the Ministry of Education. This allowed me to carry out my doctoral thesis at the University of Zaragoza, in a leading and excellent research institute like INMA. So, I could say that I didn’t hesitate to start my career as a scientist. During this period, I was fortunate to have thesis supervisors who transmitted their passion and enthusiasm for research to me. This undoubtedly encouraged me to continue developing my scientific career. Today, I can say that I am fortunate to be able to devote myself to something I am passionate about. Research is something I enjoy every day.

Could you share with us a bit about your area of research and the projects you are currently working on?

“In general terms, my research focuses on developing small containers, which we call nanoparticles, with nanometric dimensions. This means that they are much smaller than human cells. Specifically, my project is based on developing nano-containers capable of directing and transporting drugs and anti-tumor molecules in the body. This way, we load these nanoparticles, which have therapeutic properties, inside vesicles produced by our own body, so that they can kill and act against tumor cells. We hope that these nano-containers with therapeutic properties, once injected into the bloodstream, can reach their target cell and then release the drugs loaded inside them. When we take a painkiller for example, only a small part of the drug acts to relieve that headache. In this project, what we aim for is the possibility of using less therapy and directing it selectively to the tumor. In this way, the maximum possible amount of the supplied active compound reaches the cancer cells. Furthermore, by being encapsulated in these nano-containers and selectively reaching tumor cells, it would ensure avoiding side effects and not affecting other organs.”

What have been the greatest challenges you have faced as a woman in your research field?

“From my experience, to this day, I have not faced challenges attributed to gender. I believe the greatest challenges I have encountered have been common to those of my male colleagues, and are linked to being ‘young researchers’. I associate these challenges with the fact that research is not only an occupation of nearly irrelevant importance in Spain, but also one of great uncertainty, and it is not sufficiently recognized. It requires great dedication, many hours of work, sometimes yielding good results, and other times not. Furthermore, there are few and highly competitive State grants in Spain that allow you to dedicate oneself to research continuously and steadily. As you progress in your research career, you spend more time on bureaucracy, seeking funding and more projects. And the truth is that in the vast majority of cases you won’t get them. This derives in less hours in the lab doing the experiments. I believe there are not enough resources available today.”

Have you ever experienced any type of gender bias or added difficulty in your scientific career? How have you addressed this situation?

“From my experience, up to this day, I have not encountered any additional difficulties compared to men. Nor have I experienced any situations of inequality. However, I do believe that all young researchers, in general, both women and men, face significant challenges in advancing and developing their professional careers. In fact, many of the colleagues I encountered while doing my doctoral thesis have been forced to abandon their scientific careers.”

Could you tell us more about your challenges as a young researcher?

“One of the biggest challenges has been having to go abroad to continue my scientific career. This requires great effort and dedication. Already during my doctoral thesis, I undertook two stays abroad. One of them was for three months at ETH Zurich. The other one lasted for two months at Politecnico di Milano. After completing my doctoral thesis in 2020, I followed the advice of my supervisor to go abroad for at least two more years to continue my postdoctoral career. It was not an easy decision, as I embarked on my journey amid the COVID pandemic, but I had the opportunity to get a job interview with Luisa De Cola, the leader of a globally renowned group.

Although it has been a path full of changes and uncertainty, I don’t feel like I have had to give up anything I wanted in order to pursue my work. However, it’s true that research has taken my time away from other activities. I have probably missed out on doing some things. I have spent two and a half years away from my family and friends in order to continue my education. All this with the goal of returning to Spain as a researcher, which wasn’t even guaranteed. In my case, a few months ago, I managed to secure a postdoctoral grant to develop a research project for four years in Zaragoza, so it has been worth it. Specifically, I have returned to INMA to join the group led by Jesús Santamaría (who was also my thesis supervisor), one of the top scientists in Aragon. He has been involved and supported me throughout my journey as a researcher, even while I was abroad, and he advocated for my return to INMA.”

What advice would you give to young women who are considering pursuing a career in science?

“Firstly, if you’re considering it, I believe that research, like other professions or activities, often reveals its fascination only once you experience it from within. Additionally, it’s a profession that greatly nurtures the mind, fills you with stimuli… and it’s very enriching to formulate a hypothesis and be able to test it in the laboratory. I think it’s something rewarding not only professionally but also personally. In addition, it is a profession that allows you to travel to other countries, get to know other cultures, people who started as colleagues and then became friends. On the other hand, all the teamwork it requires is very satisfying. The individual work you do in the laboratory is later contrasted with others. And yes, it is true that there are bad days when things don’t go your way, but when something works out, it more than makes up for it.”

This is great timing for my next question. Have you had any ‘Eureka’ moments? What do you consider your greatest achievement, or something you feel particularly proud of?

“In 2019, there was a moment when there was a cocktail of people who were working exceptionally well and enthusiastically, of the results we were obtaining, and of the project… All of this allowed us to publish my first paper in Nature, which was highly cited afterwards. This was a really cool moment for me.”

Your very own first-author scientific publication… in Nature. And you were still doing your thesis!

“Yes, I was still working on my thesis. But of course, this achievement is not mine alone. It’s very much intertwined with all the teamwork behind it. It’s a publication that goes hand in hand with projects that Jesús Santamaría had at that time, which allowed us to test all the ideas we had. And of course, thanks to the work of many people, like Santamaría himself, Víctor Sebastián, Pilar Martín, and international collaborators we had in Edinburgh… In short, it was a cocktail that allowed us to do something that didn’t exist in the field. No one had tried vesicles with this type of nanoparticles to make catalysts before! It was a group effort, and very satisfying for all of us.”

If someone in your family, who is not a researcher, asked you about your publication in Nature, how would you explain it to them?

“Well, from a scientific point of view, we managed, for the first time, to encapsulate palladium nanosheets in lung cancer exosomes. These nanosheets are harmless to our body, but they can catalyze a reaction that halts the growth of cancer cells.”

And, as you well said, it was a group effort. What was your contribution to that publication?

“What I did was isolate the vesicles and develop a system to produce the nanosheets inside the vesicles without altering their properties. The thing is, up until that point, when attempts were made to attach these nanosheets to the vesicles, the vesicles ceased to be selective to the cancer they were targeted to. This was because the methods used were too aggressive, causing significant damage to the vesicles. What we did was to develop a very gentle method to achieve high encapsulation efficiency and maintain their ability to selectively reach the tumor. On the other hand, our collaborators in Edinburgh studied all the catalysis and reaction dynamics. So, when we administer a systemic prodrug, it’s harmless throughout the body. But as soon as it reaches the tissue where the cancer is located, this prodrug is catalyzed by the nanosheets into its toxic derivative, acting only on the tumor cells.”

That’s brilliant. Plus, you won’t have the biocompatibility issues seen in other drugs.

“Exactly, because the exosomes you use are naturally produced by the cells themselves. That’s the difference compared to other forms of encapsulation. We only tested it at the in vitro level with cells. But imagine being able to use the patient’s own exosomes to encapsulate the nanosheets. This is a starting point to explore this novel therapy further.”

And indeed, it ended up being published in Nature.

(laughs) “Yes, when such a crazy and bold idea gives you such a good result, it kind of gives you the motivation you need to keep going. And that curiosity we were talking about earlier, which I believe every scientist has, produces a very satisfying and inspiring feeling.”

What changes would you like to see in the scientific world to promote gender equality?

“I believe that calls and projects are being adapted more and more to consider maternity leave periods, etc. This allows individuals of all genders to compete on equal terms. However, it’s true that in higher-level positions, certain roles are still more commonly occupied by men. Although, it’s also true that there are more and more female principal investigators (PIs) leading research groups. I think in the future, we’ll see more and more women leading research groups as PIs.”

How do you think we can encourage more women and girls to participate in science?

“There are many science outreach activities highlighting the role of women in science or showcasing prominent female scientists. Activities like this one, promoted by CIBER-BBN, or by other institutions, are important. In my own Institute (INMA), numerous such activities are conducted, which are part of the objectives included in its Strategic Plan. From the scientific community, we are very interested in promoting interest in science, communicating the importance of scientific advances in different research areas, and conveying the daily work carried out at a prestigious research center. At my institute, we strive to make women and girls visible, inspire them, and promote their participation in science. This includes talks, exhibitions, roundtable discussions, competitions, scavenger hunts, activities in pubs, and a series of scientific talks aimed at schools, as well as in-person workshops.

I don’t think we’re doing it wrong. What is more, I think since COVID people have become more aware of the importance of scientific development. A few years ago, few people knew what a PCR was or the effort behind vaccine development. I believe it is important that society as a whole understands what these careers entail.”

That’s all. Thank you very much, María. It’s been very interesting.

“I’m glad!” (laughs)

This is part of a series of interviews to several female researchers within the context of International Day of Women and Girls in Science 2024 and Woman’s Day 2024. For more interviews, visit our news section here.

Additional information:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our biomedical Solutions, apply here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Women in NANBIOSIS part 3: Professor Fany Peña, her insights in research, parenthood, and persistence

Prof. Peña gives us her insightful point of view in overcoming challenges, embracing passion, and cultivating collaborative success towards career estabilization.

February 2024, Unizar/CIBER-BBN, Zaragoza (Spain)

The echo of our footsteps returns from the high ceilings filled with electrical conduits and gas pipes. An alarm sounds in the distance, while the warmth of the Zen Garden located in the center of the R&D Building reminds us once again that peace and progress will never be at odds.

We continue forward across the maroon floor, towards one of the access gates that separate each wing of the building. After crossing it, and almost without warning, the echo disappears with the slam of the heavy security door behind us. Now, the noise of the machines muffles our voices and footsteps as we walk through one of the many laboratories of the building. The numerous panels and posters, along with the bustling activity, make it clear that this is a place where science is the undisputed protagonist.

Instron MicroTester, one of the many devices available at Unit 13.

With a strangely welcoming feeling, we enter the spacious laboratory of Professor Estefanía Peña. The light in the room is bright, neutral, and aseptic like the complex machines that adorn it. High-precision devices, some venerable with a history of witnessing scientific breakthroughs, and others, the product of cutting-edge engineering, now contributing to new frontiers.

Two people await us in the room: a young technician, quiet and discreet, and his boss, a woman who, despite, or perhaps as a consequence of her undeniably established scientific career, radiates youthfulness, energy, and determination. Both kindly welcome us to their realm, where they rule over the complex machines. The woman quickly grabs the reins of the conversation, filling the room with her overwhelming, yet approachable personality.

Prof. Peña introduces herself: “Fany, just Fany is fine. That’s how everyone calls me.”

The interview begins.

Alright, Fany, tell us a little about yourself and your research group.

“My group focuses on computational modeling of the human body and pathologies. We also design implants and devices to correct pathologies. We work on real-time simulation and Artificial Intelligence.”

What motivated you to choose a career in research?

“Since I was very young, I’ve loved mathematics, physics, experimenting, asking questions like ‘why does the apple fall?’, and also because of the influence of my family.”

Could you share with us a bit about your research area and the projects you’re currently working on?

“My group is quite large and has three main lines of research: artificial intelligence applied to biological engineering, prosthetic design, lenses, muscle fatigue, and, in the case of those closest to me and Dr. Martínez Barca, the mathematical study of cardiovascular pathologies: myocardial infarction, how these lesions affect the heart, atheroma plaque, and devices to try to correct vessel obstruction. Recently, we’ve been working on modeling aneurysms in collaboration with groups from Val d’Hebron Hospital.”

Have you had any Eureka moments in your career? What do you consider to be your greatest achievement or contribution in your field at a professional or personal level?

“Probably my first doctoral thesis. Feeling capable of teaching and mentoring someone was a significant milestone for me. The topic was about carotid stents.”

What have been the biggest challenges you’ve faced as a woman in your research field?

“The biggest challenge has been balancing personal life, especially family life, with work. Especially when you’re young. I’m someone who, when I dedicate time to something, I dedicate it in full. Moreover, the moment when you have to dedicate much more time to a research career starts right after you finish your doctoral thesis until you reach professional stabilization. And that’s usually the period when you start a family. That’s a key moment and the greatest difficulty that, I believe, 99.9% of female researchers face.”

How do you think these barriers can be overcome?

“To be honest, I acknowledge that the role of a mother is almost irreplaceable. However, I believe that society is still not prepared to understand that women, besides being mothers, also want to do other things. It’s not just a problem of task distribution; I think nowadays roles in motherhood and fatherhood are quite shared, especially among young people. I believe it’s more of a social issue, meaning that even in terms of state aid aimed at encouraging motherhood, it’s scarce. Imagine, in other countries it’s inconceivable not to have a daycare or a similar service at the workplace. I think the role of a mother is very important, but…”

…having a daycare at work helps, right?

“It helps quite a bit, yes.”

“The most important thing in your professional career is to dedicate yourself to something you love (…) that’s incredibly important from a professional point of view.”

—Prof. Estefanía Peña, Scientific Coordinator of Unit 13.

What advice would you give to young women considering pursuing a career in science?

“Go for it! The most important thing in your professional career is to dedicate yourself to something you love. I mean, family and your personal life bring the greatest happiness, yes, but I know many people who work in something they don’t like, either because they haven’t found work anywhere else or because they opted to study something easy back then, even if they didn’t like it that much… I believe that working in something you love allows you to do things much better, and that’s incredibly important from a professional point of view. Study and do what you love, and if you love science… go for it!”

And what about all those girls who doubt?

“Yes… the truth is, from the talks I’ve given at schools, the response from girls often is ‘Phew!’ And usually, the female ratios, in my case as an engineering professor, are very, very low. But success rates, the highest grades… there’s no distinction there. It’s a 50/50. That means there’s no added difficulty, beyond the intrinsic difficulty of a science career, which both men and women will feel equally. Probably women will have more advantage since, for whatever reason, we tend to be able to focus more and be, as we use to say in Aragon, ‘more stubborn’. It doesn’t really matter much if subjects are more difficult because when you really like what you do, you don’t mind dedicating more time to it.”

What support have you received throughout your career that has been particularly useful?

“My colleagues, without a doubt. I’ve had people I’ve worked with and continue to work with since I started my thesis. There are people I’m still working with whom I started working with 25 years ago. And I have the utmost confidence that if I’m on maternity leave, nothing will go wrong. Or that if one of my colleagues fails, the rest of us will always be there. That’s extremely important. I don’t think it’s necessary to mention specific names. Science is very collaborative, whether from a teaching or research perspective. I always say ‘tanto monta, monta tanto’.” [Interviewer’s Note: a historical idiomatic expression when both king and queen held equal authority and power in the newly unified kingdom of Aragón].

Very Aragonese phares as well.

“Yes, very Aragonese.”

Thank you very much for your time, Fany.

“Thank you very much, Gabriel.”

This is part of a series of interviews to several female researchers within the context of International Day of Women and Girls in Science 2024 and Woman’s Day 2024. For more interviews, visit our news section here.

Additional information:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our biomedical Solutions, apply here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

The NABIHEAL Project Pioneers Wound Healing with New Biomimetic Matrices

Nearly 40 scientists across 7 countries are pioneering this breakthrough in wound healing using a nobel and affordable bio-inspired, anti-bacterial matrix.

In addition to the vast consortium, the project also comprises 5 small and medium-sized enterprises (SMEs) and 9 academic institutions. These were convened last February at the University of Granada to share insights, progress, and strategies.

According to an article published by UGR at the beginning of this month, about 40 researchers involved in the project have attended a meeting to share results and progress.

The Horizon Europe project NABIHEAL, coordinated by the Biomedical Research Networking Center (CIBER) at the Institute of Materials Science in Barcelona (ICMAB, CSIC), has held a consortium meeting. The international consortium consists of 14 partners from 7 countries, including 5 small and medium-sized enterprises (SMEs) and 9 academic institutions. These partners have expertise in the development, evaluation, and commercialization of products for wound healing, nanotechnology, safety, and regulation.

Who are the NABIHEAL project partners?

There are three groups from CIBER-BBN participating within NABIHEAL: two groups correspond to Unit 6 and Unit 16 of NANBIOSIS. The former is the NANOMOL Group, and is lead by Nora Ventosa, the project coordinator of NABIHEAL. The later corresponds to our Surface Characterization Unit from UEx. The third CIBER-BBN group is the Photonics Engineering Group (GIF) from the University of Cantabria, with several of its leaders working at NABIHEAL.

In addition, researchers from the UGR’s Advanced Therapies: Differentiation, Regeneration, and Cancer group, as well as the Clinical and Translational Dermatology group, are participating as one of the partners in this consortium. Both belong to the ibs.GRANADA Biosanitary Research Institute and the UGR’s Modeling Nature: from nano to macro Excellence Unit.

Professor Juan Antonio Marchal Corrales leads the project at the UGR and is part of the project’s steering and executive committees. This project is developed at the Singular Laboratory of Biofabrication and 3D (bio)printing (BioFabi3D), located at the Biomedical Research Center (CIBM). In addition, UGR and ibs.GRANADA, in collaboration with the company Bioibérica, contribute their expertise in the biofabrication and 3D bio-printing of human skin models based on components of the matrix of each of the skin layers.

About the meeting at UGR:

The meeting, held on February 7th and 8th, was inaugurated by the project coordinator, Nora Ventosa, Scientific Director of Unit 6 of NANBIOSIS and researcher at a researcher at CIBER and ICMAB-CSIC, and by Enrique Herrera, the Vice-Rector for Research and Technology Transfer of the University of Granada.

The meeting was attended by 38 researchers from among the NABIHEAL partners. These included the Biomedical Research Networking Center (CIBER) at the Institute of Materials Science in Barcelona (ICMAB); the University of Extremadura and the University of Cantabria; the Spanish National Research Council (CSIC); Nanomol Technologies S.L. (NT); Bioiberica S.A.U (BIO); Histocell S.L (HCELL); Asphalion (ASPH); MyBiotech GmbH (MyB); Charité-Universitätsmedizin Berlin (CH) from Germany; the Institute for Medical Research and Occupational Health (IMI) from Croatia; the University of Aarhus (AU) from Denmark; the Technion-Israel Institute of Technology (IT) from Israel; BioNanoNet Forschungsgesellschaft mbH (BNN) from Austria, and the University of Maribor (UM) from Slovenia, as reported by the UGR.

About NABIHEAL project:

NABIHEAL, “Nanostructured Antimicrobial Biomaterials for Healing Complex Wounds,” is funded by the Horizon Europe Research and Innovation program. It has a total budget of nearly 5 million EUR for the next four years. The project addresses two unmet medical needs in the healing of complex wounds: firstly, affordable treatments for wound infections and prevention of complications during healing, and secondly, a strategy to optimize the composition and efficacy of drugs and dressings for wound healing.

Aim of the project:

Complex wounds affect the quality of life of more than 2% of the population in developed countries. Thus, it is a global health problem with a significant impact on healthcare economics. Moreover, complex wounds, including chronic wounds or major burns, are highly susceptible to microbial infection and biofilm formation, making them difficult to treat. In this regard, silver is a widely used metal in antimicrobial products for treating wound infections. However, silver-based products are expensive and have various drawbacks due to costs and environmental and safety concerns.

The NABIHEAL project will develop multifunctional biomaterials to address some of the unmet medical needs in wound management. This project will provide affordable treatments for wound infections or prevention of complications during all phases of wound healing.

In the short and medium term, NABIHEAL will develop —at least— two innovative multifunctional biomaterials for wound healing, using affordable manufacturing technologies based in the EU. In the long term, NABIHEAL could become an alternative to silver in wound dressing for wound healing.

You can read more about NABIHEAL project at the official webpage here.

Meeting of NABIHEAL project members at UGR in February 2024. Source: UGR.

Additional information

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This goes along with their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our biomedical Solutions, apply here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Women in NANBIOSIS part 2: Ana Martín, and her Multi-degree Journey

We ask Dr. Martín about her innovations in cancer treatment with nanoparticles, in the context of her collaborations with NANBIOSIS.

This is part of a series of interviews to several female researchers within the context of International Day of Women and Girls in Science 2024 and Woman’s Day 2024. For more interviews, visit our news section here.

February 2024, INMA-CSIC/CIBER-BBN, Zaragoza (Spain)

We are walking through the tall corridors that connect the numerous blocks of the large R&D Building, located near the Río Ebro Campus of Unizar. This building is a conglomerate of institutes, laboratories, and research groups. In its dead center, open to the outdoors, a Zen Garden welcomes us, like an oasis of peace in the midst of this whirlwind of information, advancements, and scientific progress.

We enter the meeting room. The lights are flooding a large dark table surrounded by chairs. After a few minutes, Ana arrives. We greet each other warmly. It has been a long time since we last saw each other, perhaps since college? With a nervous laugh, she confesses, “Having a microphone in front of you is quite intimidating…”. She laughs again.

I consider making a joke right after the first question, in an attempt to reassure her. But I quickly change my mind as soon as she starts talking. Her nerves have completely dissipated, and her words, once shaky, now fill the recording with a confidence I didn’t expect. The confidence of someone who carries behind them a career as varied as it is fascinating.

The interview begins.

Well, Ana, tell us a little about yourself.

“My name is Ana. I have a degree in Veterinary Medicine, a degree in Biochemistry, and a Ph.D. from the University of Zaragoza. Currently, I work in the NFP group. My chemist colleagues synthesize nanoparticles, and I use them for anti-cancer treatments.”

What motivated you to choose a career in science?

“Since I was little, I’ve always been very interested in natural sciences. I’ve always been intrigued by how biological systems work, and over time, I became interested in pathology, the cause of diseases, and their treatment. That’s why when I had to choose a career, I chose Veterinary Medicine and, later, Biochemistry.”

Could you share with us a bit about your research area and the projects you are currently working on?

“Since I started working in research, I have been involved in the field of biomedicine, but the areas have been progressively changing. My career began in the field of aging and vascular diseases. Later on, I applied this knowledge to cancer research, which is the field I am currently working in, using nanoparticles as an anti-tumor treatment.”

What nanoparticles do you use?

“We use nanoparticles that, through catalysis, consume glucose and produce toxic species, inducing cell death specifically in tumor cells. We have many types of nanoparticles, especially by combining different types of metals. We introduce them into extracellular vesicles, which have tropism towards tumors, significantly improving the treatment compared to free nanoparticles.”

And what types of cancer do you treat?

“We use different cell lines from lung cancer, colon cancer, cervical cancer, brain cancer… We aim to create a treatment that is not specific to one type of cancer but can be applicable to many types of tumors. And high glucose consumption is something that tumors have in common.”

What have been the greatest challenges you have faced as a woman in the field of research?

“I believe the most difficult challenge has been balancing a scientific career with personal life, specifically with motherhood. When you work as a scientific researcher, there is never a perfect time to have children. You know that your career will be put on hold for a while, and research never stops, so there is a constant fear of falling behind. But as a scientist and a mother, I think one should never give up on motherhood because of it. In the end, everything is achievable, and personal life should never be sacrificed for professional life.”

Have you experienced any gender bias or added difficulty in your scientific career? How have you addressed this situation?

“In my case, I have been fortunate and I don’t believe I have experienced any gender bias. However, I do know of cases involving female colleagues who have encountered it.”

“There are challenging moments during a scientific career (…), but in the end, persistence pays off.

—Dr. Ana Martín, collaborator scientist in Unit 9.

What advice would you give to young women considering pursuing a career in science?

“My advice would be to enjoy the work in research. We have to remember that it is one of the best jobs out there; we are doing something for society, to improve it, whether working in biomedicine or other areas like technology. There are challenging moments during a scientific career, times when it’s difficult (due to lack of funding, opportunities, etc.), but in the end, persistence pays off. And if for some reason it doesn’t work out, all the knowledge gained will still be very useful in other areas.”

And what advice would you give to those who are unsure?

“Well, if they’re not sure… before diving into a doctoral thesis, they should visit laboratories, see how things work here, and choose something they enjoy. Because you’re going to spend a lot of time working on it, and the environment you’re in is very important.”

How do you think gender stereotypes can be overcome in your research field?

“I don’t believe there are gender stereotypes. However, it is true that currently, positions of greater responsibility are often held by men. In my opinion, equal opportunities should be given to men and women, and the time taken by women for their careers due to motherhood should not be penalized. This way, we can finally break the ‘glass ceiling’, and young people can also have female role models.”

And what about being a mother?

“In other countries, I’ve seen people having children during their doctoral thesis, and that’s unthinkable here. I believe the measures taken so far are just a patch and don’t fully compensate.”

What do you consider your greatest achievement or contribution in your field of study?

“Personally, my greatest achievement was obtaining a project on breast cancer in which I was Principal Investigator. As for my greatest contribution, I couldn’t say for sure. I believe everything I have done has contributed a little bit to research on vascular calcification, aging, and cancer. Perhaps it may seem somewhat insignificant, but it could be very important in aiding future research.”

What support have you received throughout your career that has been particularly helpful?

“The support of my family and my partner has been indispensable throughout my career. I also appreciate the support of the Government of Aragon and the European Union for the funding I received during my predoctoral and postdoctoral stages.”

What changes would you like to see in the scientific world to promote gender equality?

“I would like to see women not have to postpone or give up their personal lives for their work. I believe that, with the support of institutions, anything is achievable, as is the case in other European countries.”

How do you think we can encourage more women and girls to participate in science?

“I truly believe that there are more women in science than men. The problem is that leadership positions are almost never held by women, perhaps because many women end up sacrificing their careers for their personal lives, and that shouldn’t happen. We should break the glass ceiling and allow women to access leadership positions so that girls have examples of female scientists to follow and don’t think that science is only for men.”

It’s been a pleasure to see you again and chat with you, Ana. And thank you for your time.

“Thanks to you too.”

For more interviews like this, visit our news section here.

Additional information:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our biomedical Solutions, apply here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Women in NANBIOSIS part 1: Anna Aviñó, from Curiosity to Innovation

Anna Aviñó speaks about her journey as a researcher and her captivating oligonucleotides.

This is part of a series of interviews to several female researchers within the context of International Day of Women and Girls in Science 2024 and Woman’s Day 2024. For more interviews, visit our news section here.

February 2024, IQAC-CSIC/CIBER-BBN, Barcelona (Spain)

Could you share with us a bit about your research area and the projects you are currently working on?

I am a chemist specializing in nucleic acid chemistry. These compounds are wonderful, I would say unique; not only do they contain genetic information, but they are also involved in countless biological processes. My focus lies in synthetic and structural studies of small nucleic acids, known as oligonucleotides.

And these compounds, what are they used for?

Oligonucleotides can adopt different structures, including canonical duplexes as well as other secondary structures like quadruplexes and triplexes, the latter being particularly important in many diseases. I apply my chemical knowledge to generate and evaluate therapeutic oligonucleotides (such as antisense, siRNA, aptamers). Furthermore, oligonucleotides are so versatile that I also use them as recognition elements in various biosensors to detect pathogens, disease-related genes, etc.

“Oligonucleotides (…) are recently being approved as new advanced gene therapies for many diseases, including rare and cardiovascular diseases.

—Dr. Anna Aviñó, scientific coordinator of Unit 29.

What motivated you to choose a career as a researcher? What have been the biggest challenges you have faced as a woman scientist?

I wanted to understand what things are made of, how medicines are made… I am currently 55 years old with a long scientific career, but it has never been easy to balance top-level research with family life. I have to thank CIBER as it’s the longest contract I’ve had, but I also have to say that I haven’t had opportunities for career advancement within it.

Have you experienced any kind of gender bias or added difficulty in your scientific career? How have you addressed this situation?

I haven’t faced any added difficulty per se, but the reality is that in my research center, the principal investigators are predominantly women with few family responsibilities.

How do you think gender stereotypes in the scientific field can be overcome? And what advice would you give to young women considering a career in science?

I think that stereotypes can be overcome by promoting unbiased education in schools regardless of the field of study. I would definitely encourage young women and advise them not to be afraid to pursue positions of responsibility.

What do you consider to be your greatest achievement or contribution in your field?

The oligonucleotides, which are my area of study as I mentioned, are recently being approved as new advanced gene therapies for many diseases, including rare and cardiovascular diseases. I can say that I can synthesize drugs in my laboratory, and furthermore, I believe I am the person who has conducted the most synthesis of these products in Spain!

What support have you received throughout your career that has been particularly helpful?

As I mentioned, thanks to CIBER, I continue to be a researcher. However, I am currently in a delicate situation because my principal investigator is retiring, and I don’t know how my scientific career will continue.

What changes would you like to see in the scientific world to promote gender equality? How do you think we can encourage more women and girls to participate in science?

The scientific world is not particularly biased in terms of gender equality. However, leadership positions tend to be held by men, even though more women are starting careers in research. Regarding encouraging more women, as I mentioned, education. Education is the key.

For more interviews like this, visit our news section here.

Additional information:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our biomedical Solutions, apply here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Polymeric Micelles Delivering Hope: A Revolutionary Strategy to Fight Cancer

NANBIOSIS researchers reach intracellular targets with encapsulated antibodies.

February 2024, IQAC-CSIC/CIBER-BBN, Barcelona (Spain) and Santiago (Chile)

Dr. Abasolo and her team have developed an innovative strategy to combat intracellular oncogenes, notably KRAS, implicated in various deadly cancers. By encapsulating therapeutic antibodies within polymeric micelles, they have successfully facilitated the entry of these antibodies into cancer cells, targeting internal markers. This breakthrough, achieved through international collaboration, represents a significant advancement in cancer treatment and holds promise for addressing other diseases with intracellular targets. These findings provide hope for improved therapies and outcomes in cancer and beyond.

Every individual is said to have an inner enemy, lurking to sabotage under favorable circumstances. In the case of our cells, this rings particularly true. Some genes are as necessary for their proper function as they are dangerous when they malfunction. Those that, under certain circumstances, promote tumor development are known as oncogenes. But we now have new tools to combat them.

In the ongoing battle against cancer, researchers have reached a significant milestone in combatting intracellular oncogenes. Thanks to a groundbreaking strategy developed by Dr. Abasolo and her team from Unit 20, they managed to reach particularly difficuly intracellular targets. Their innovative approach involves utilizing therapeutic antibodies encapsulated in polymeric micelles, facilitating their entry into cancer cells and targeting internal markers. The results, achieved through international collaboration, mark a significant advancement in cancer treatment and hold promising possibilities for addressing other diseases with intracellular targets.

KRAS is the name given to one of these oncogenes, and it’s a particularly dangerous foe. The small protein produced by the KRAS gene is a molecular switch that controls numerous cellular functions, including survival, proliferation, differentiation, and migration. When KRAS mutates, this switch stops working, preventing the cell from self-regulating, often leading to some of the most malignant and lethal types of cancer, such as pancreatic, colon, or lung cancer. Moreover, this mutated protein is difficult to target due to its unique molecular structure and the fact that it resides within the cell. However, thanks to our new anti-tumor technology, we’re able to reach it.

One method of blocking mutated KRAS is through the use of therapeutic antibodies. These antibodies, by specifically binding to the protein, inhibit its function, halting the malignancy of cancer cells. However, one of the challenges in using these antibodies is that they cannot enter cells on their own. None of the attempts to internalize them have been successful, until now.

In a recent study published last year, the team led by Dr. Abasolo, in which our Unit 20 is integrated, has successfully attacked mutated KRAS using anti-KRAS antibodies. To achieve this, they encapsulated the antibodies in nanometric drug delivery systems (NanoDDS). Specifically, they used micelles composed of a polymer capable of surrounding the antibodies, facilitating their entry into cells. Furthermore, these nanostructures enable passive and selective entry into tumors and, to top it off, the polymer used prevents the emergence of dreaded cancer multi-drug resistances.

These unprecedented results are the product of international collaboration, where in silico simulation, in vitro assays, and animal studies have gone hand in hand. These results have demonstrated the effectiveness of a new tool capable not only of serving in the fight against cancer, but also of acting on therapeutic intracellular targets present in many other diseases. A way to defeat that inner enemy.

References

[1] Diana Rafael, Sara Montero, Pilar Carcavilla, Fernanda Andrade, Júlia German-Cortés, Zamira V. Diaz-Riascos, Joaquin Seras-Franzoso, Monserrat Llaguno, Begoña Fernández, Alfredo Pereira, Esteban F. Duran-Lara, Simó Schwartz Jr., and Ibane Abasolo. Intracellular Delivery of Anti-Kirsten Rat Sarcoma Antibodies Mediated by Polymeric Micelles Exerts Strong In Vitro and In Vivo Anti-Tumorigenic Activity in Kirsten Rat Sarcoma-Mutated Cancers. ACS Applied Materials & Interfaces 2023 15 (8), 10398-10413 DOI: 10.1021/acsami.2c19897

Additional information

In this project, Unit 20 of the NANBIOSIS ICTS has collaborated, providing both functional validation and all preclinical trials with murine models. All of this has been conducted following the strictest ethical guidelines.

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our biomedical Solutions, apply here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Women in NANBIOSIS: Our New Interview Series

In celebration of the International Day of Women and Girls in Science 2024, NANBIOSIS proudly presents a series of insightful interviews featuring some of our most esteemed female researchers and collaborators.

As we commemorate this important day, join us in honoring the achievements of these remarkable individuals, as they share their perspectives, challenges, and triumphs in the pursuit of scientific excellence. Explore our news section for more inspiring interviews, and discover the diverse talents driving innovation within NANBIOSIS and beyond.

Drs. Anna Aviñó, Fany Peña, Ana Martín, María Sancho, Susana Vilchez, Ana Mincholé and, of course, Dr. Elisabeth Prats, all of them we had the pleasure and privilege to intervew and tell part of their story, career, projects, prospects and motivations. Delving into their remarkable contributions and experiences, this series sheds light on the invaluable role women play in shaping the field of biomedical research.

Starting tomorrow, February 12, and continuing until Women’s Day on March 8, immerse yourself in this captivating series, as we highlight the profound impact of female leadership in science and technology. Witness firsthand the passion, dedication, and ingenuity of these pioneering women, as they navigate the frontiers of biomedical research and innovation.

Join us in celebrating the women driving innovation and shaping the future of science. Visit our news section to dive into this captivating series and discover the transformative impact of female leadership in NANBIOSIS.

This is part of a series of interviews to several female researchers within the context of International Day of Women and Girls in Science 2024 and Woman’s Day 2024. For more interviews, visit our news section here.

Additional information:

For those eager to explore further, NANBIOSIS offers comprehensive and integrated advanced solutions in biomedical applications, ranging from biomaterials to nanomaterials and their nanoconjugates. Partner with us to unlock cutting-edge biomedical solutions, designed to address diverse challenges in drug delivery, biomaterials, and regenerative medicine. Apply now to access our transformative biomedical solutions.

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our biomedical Solutions, apply here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More