+34 620 10 75 37info@nanbiosis.com

News

nanbiosis news

Gene Therapy for Cystic Fibrosis: new inspiring scientific collaboration

Researchers are advancing gene therapies for cystic fibrosis using non-viral delivery methods, focusing on patient needs and innovative treatments.

Basque Country, September, 2024 – As the world comes together to mark World Cystic Fibrosis Day, from NANBIOSIS we want to highlight the collaborative efforts between our Unit 10 “Drug Formulation” (U10), the University of the Basque Country, and the Cystic Fibrosis Patient Association of the Basque Country (Arnasa) in the fight against this genetic condition. Together, our institutions are advancing the development of gene therapies aimed at treating this life-threatening hereditary disease.

Gene Therapy: A new frontier in treating Cystic Fibrosis

Cystic fibrosis (CF) is a genetic disorder caused by mutations in the CFTR gene, which affects the respiratory and digestive systems. Traditional treatments focus on managing symptoms, but the emergence of gene therapy offers new hope for a more effective, long-term solution. Gene therapy introduces functional copies of the mutated gene or corrects specific mutations, addressing the disease at its genetic root.

Unit 10, located at the NanoBioCel research group and led by Prof. José Luis Pedraz and Dr. Idoia Gallego Garrido from the University of the Basque Country, is leading the development of non-viral gene-editing systems to deliver therapies for CF. These systems are being tested in both 2D and 3D in vitro models of cystic fibrosis, offering a cutting-edge approach to targeting the disease.

In a recent interview, Lucía Enríquez, one of our researchers at Unit 10, explained, “Cystic fibrosis is a disease that often involves lung pathology, though it is not the only one. We work on developing therapies that are non-invasive, often of genetic origin, applying the most cutting-edge and effective techniques possible.”

Innovative delivery platforms: A key to success

While viral vectors have historically been used for gene therapy delivery, they present certain risks and limitations, including immune responses and insertional mutagenesis. This has spurred interest in the development of non-viral vectors, such as niosomes and lipid nanoparticles, which offer a safer alternative for gene delivery.

NanoBioCel’s research explores the potential of niosome formulations, in which non-ionic surfactants replace phospholipids, and other promising technologies like nanodiamonds, known for their biocompatibility and scalability. These non-viral vectors are poised to offer a more secure, efficient method for delivering gene therapies, marking a significant advancement in the treatment of CF.

One of the most exciting areas of research is the development of a non-invasive, inhalation-based gene delivery system. This method targets the lungs directly, making it a promising solution for CF, which primarily affects the respiratory system. However, this route presents unique challenges, as genetic material must overcome both intracellular and extracellular barriers within the lungs. Our research team is currently working on designing an efficient aerosol-based delivery system to overcome these hurdles.

Researcher developing lung-on-a-chip models that will simulate the conditions of cystic fibrosis for use as non-animal models to study and assess the efficacy of various therapies.

A patient-centered approach: Collaboration with Arnasa

The partnership between NanoBioCel and Arnasa, the Cystic Fibrosis Patient Association of the Basque Country, is central to the success of this project. Arnasa plays a critical role in ensuring that the research is focused on the real-world needs of patients living with CF. By providing insight into the patient experience and highlighting the most pressing challenges, Arnasa helps guide the development of therapies that can significantly improve the quality of life for CF patients.

Arnasa’s commitment to advocacy and patient support has been instrumental in raising awareness about cystic fibrosis and the importance of investing in innovative research, especially during occasions like World Cystic Fibrosis Day.

Looking to the future

Unit 10 and its collaborators remain dedicated to advancing gene therapies and non-invasive treatments for cystic fibrosis. Through the integration of cutting-edge technology and patient-focused research, they aim to not only improve existing treatments but also create new therapeutic avenues that offer greater hope to those affected by this debilitating condition.

On World Cystic Fibrosis Day, we are reminded of the importance of continued research, collaboration, and awareness to drive progress and deliver better outcomes for patients worldwide.

What is NANBIOSIS?

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

Leading scientists

The main value of NANBIOSIS is our highly qualified and experienced academic scientists, working in public institutions, renowned universities and other research institutes.

Custom solutions

Designed for either scientific collaboration or the private industry, we adapt our services to your needs, filling the gaps and paving the way towards the next breakthrough.

Cutting-Edge facilities

Publicly funded, with the most advanced equipment, offering a wide variety of services from synthesis of nanoparticles and medical devices, including up to preclinical trials.

Standards of quality

Our services have standards of quality required in the pharmaceutical, biotech and medtech sectors, from Good Practices to ISO certifications.

In order to access our Cutting-Edge Biomedical Solutions with priority access, enter our Competitive Call here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

New gene therapy for Cystic Fibrosis: an interview with Lucía Enríquez

Vasque Country, September, 2024 – In this interview, Lucía Enríquez, a PhD researcher at NANBIOSIS Unit 10, discusses her work on gene therapies for cystic fibrosis, a genetic disease that mainly affects the lungs. Her research focuses on using non-viral vectors to deliver gene-editing tools, like Prime Editing, a variation of CRISPR-Cas9, to correct mutations at the genetic level. Lucía explains the advantages of non-viral vectors, such as avoiding immune responses and offering safer, non-invasive treatment options. She also highlights the importance of interdisciplinary collaboration, particularly in her work at NANBIOSIS, where advanced drug formulation and pulmonary delivery systems are developed. Lucía reflects on the challenges of pursuing a scientific career in Spain, emphasizing the need for better working conditions and societal support for researchers.

Interviewer: Hi Lucía, tell us a bit about your research area. What projects are you currently working on?

Lucía: I’m currently working on my doctoral thesis in the laboratory of José Luis Pedraz, who is the director of Unit 10 of NANBIOSIS. My thesis focuses on the development of gene therapies encapsulated in non-viral vectors, mainly applied to the treatment of cystic fibrosis, a genetic disease with which our group has been collaborating for a long time. We work extensively on non-viral vectors, almost always applied to gene therapy, as well as other projects related to chemical molecules or other types of therapies.

Something very well-established in our group is that all of these treatments or developments must always be as patient-friendly as possible, meaning minimally invasive. In fact, one of the services we offer at NANBIOSIS is the development and characterization of pulmonary formulations. This is largely due to our experience with cystic fibrosis, as it’s a disease that often involves lung pathology, though it is not the only one.

In summary, we work on developing therapies that are non-invasive, often of genetic origin, applying the most cutting-edge and effective techniques possible.

Interviewer: Non-viral vectors, as I understand, differ from virus-based vectors in that they do not use the mechanisms of viruses. Additionally, they can act at various levels and don’t necessarily alter DNA. Can you tell us a bit more about these mechanisms and how they alter genes or their expression?

Lucía: There are many forms of gene therapy, as you mentioned. Among other types, some modify the genome sequence itself, while others alter the expression of that genome without modifying its sequence.

One of the most important aspects that many research groups focus on is the delivery of these gene therapy tools into the cell. The biggest challenge is ensuring that once inside a complex living organism, like a human, these tools reach the site where we need them to take effect. Historically, the most effective way to deliver these genetic tools was through viral vectors. These are modified forms of viruses that don’t cause the pathology typical of the virus but use the virus’s ability to infect a cell to deliver these genetic tools.

Non-viral vectors aim to achieve that delivery effectively and target the site where they need to act without using a viral vector. This avoids the negative aspects of viral vectors, such as immune responses, gene insertion in some cases, etc. However, non-viral vectors were very inefficient until the development of lipid nanoparticles, which is what the COVID vaccines are made of, where it became clear that this was a very clinically viable option.

Cystic Fibrosis Symptoms. Source: Wikimedia Commons

Interviewer: No doubt that was a global boost, which had been in development for years, and had even been considered for cancer therapies, although outside clinical application. In your case, you say it’s for cystic fibrosis, which is a genetic disease as you mentioned. Do you work at the level of gene expression, at the gene level… what level do you edit at, and what tools do you use?

Lucía: Cystic fibrosis is a genetic disease, as I said, which can be caused by many different mutations. There’s one that is highly prevalent, accounting for over 40% of cases, which is a small deletion of three base pairs that causes issues with a chloride-transporting protein. This affects many organs in the body, but it’s especially important in the lungs because patients with cystic fibrosis accumulate a lot of mucus in their lungs and have serious breathing problems, as well as frequent respiratory infections, etc.

One approach to treating cystic fibrosis at the gene therapy level, which is being led by a colleague of mine who is also working on their thesis, involves delivering a healthy copy of the mutated gene in the form of a plasmid. This means it will promote the functional expression of the gene in a non-pathological way, but it won’t insert into the genome, and the expression won’t be permanent, so the treatment would need to be reapplied.

In my thesis project, we are developing genetic tools based on Prime Editing, which is a variation of the CRISPR-Cas system that corrects the mutation. These tools target the site where the three-base-pair deletion is located and correct it. Here, there is indeed an alteration of the patient’s genome sequence, with the goal of restoring a “wild-type” genotype, or a healthy sequence. This change in the sequence would be permanent in that cell and in all its daughter cells.

Interviewer: Right, when the cell divides, it preserves that gene through subsequent generations. Also, CRISPR has so many applications and is a hot topic. Can you briefly explain what the CRISPR-Cas technology consists of? How do you manage to edit such a specific gene so precisely?

Lucía: The CRISPR-Cas9 technology was discovered because it was originally a way bacteria could defend themselves from viruses. Essentially, it consists of two components: a protein called Cas9, which is a nuclease that cuts the double strand of the genome, and an RNA sequence that we call guide RNA.

The guide RNA scans the entire genome of the cell, and when it reaches a site where the base pairs match perfectly, the Cas9 protein binds to it, recognizes it, and cuts the double strand of DNA. This triggers many DNA repair mechanisms in the cell. If you only introduce the Cas9 protein and the guide RNA, what you usually create is a knock-out (a silenced gene). This happens because the cell tries to repair the sequence at all costs, but it often makes mistakes, like skipping base pairs or adding extra base pairs, in a desperate attempt to avoid cell death.

If, at the time you make the double-strand cut, you also introduce a DNA sequence that matches the genome sequence, there’s a chance the cell will incorporate that sequence as it attempts to repair the break. If you’re introducing a healthy sequence, you’re effectively curing the cell of the genetic disease it had.

What we do isn’t exactly CRISPR-Cas9. We use Prime Editing, which is a variation of this system where the protein doesn’t cut both strands of the DNA, only one of them. This allows you to introduce small insertions, deletions, or base pair changes. In our case, it’s useful because, as I mentioned, one of the most prevalent mutations in cystic fibrosis is a deletion of three base pairs. So, it’s simpler and more efficient in terms of genetic correction to insert those three base pairs using Prime Editing, which is still a variation of CRISPR, rather than introducing an entire genomic sequence to try to repair the gene.

Interviewer: It really is amazing. And this is a system that can be universalized for many different applications, not just for cystic fibrosis. There are so many different genetic diseases, and here you have a tool that you can simply adapt, I imagine, by changing the guide RNA and the sequence you want to introduce. This way, it could be applied to a completely different disease, right?

Lucía: Exactly. In fact, since it was discovered, this tool has been used by many research groups around the world for all kinds of genetic diseases.

Interviewer: Great. Let’s talk a bit about you and your scientific career. On a personal level, what motivated you to choose a career in science? You’re doing a PhD now—what made you think, “This is for me”?

Lucía: It was mainly curiosity. I’ve always considered myself a very curious person, constantly seeking to understand the reasons behind things. In the end, research is about pushing the boundaries of knowledge to go a bit further and see beyond what’s known. That fascinates me on every level, but it also fulfills me personally, because of the kind of person I am—someone who needs to know things, search for answers, solve problems. I think that’s something really cool.

Interviewer: Yes, and it’s something quite common in the scientific world. Many people get into it driven by that initial curiosity, asking, “Why is this like that? Why does it work this way?” Your scientific career has started recently—have you had any “Eureka” moments? Moments where you felt proud of something working out, or something you consider an achievement, either personally or professionally?

Lucía: Well, honestly, I think “Eureka” moments don’t happen that often. If you do have one of those moments, maybe you’ll win a Nobel Prize afterward (laughs). But I think it’s more about the day-to-day—the small achievements, the little things. It also depends a lot on what kind of research you do. If you’re in more basic research, where you’re trying to understand how things work or molecular processes, I think it’s easier to get one of those “Eureka” moments—like discovering the function of a specific protein or the implications of a certain process, etc.

For us, since we do more process development and optimization, unfortunately, 80, maybe even 90% of the results are negative (laughs). I think it’s more about the small wins, taking one step at a time, building little by little, rather than having a big “Eureka” moment.

Interviewer: And constantly hitting a wall, saying “It’s not working, it’s not working…” and then one day suddenly saying, “I did it, I know what went wrong!” Even in that 10-20% of success, it’s very satisfying, right?

Lucía: When it works, it’s very satisfying (laughs).

Interviewer: What advice would you give to young people considering a career like yours in science?

Lucía: When people ask me, I always tell them to explore a lot and talk to people. There’s no wrong path—you can go into research or not. There are many ways to stay connected to science without working in a lab. I think everyone has to find their own path. It’s a beautiful path—I enjoy it, and as I said before, being constantly at the edge of knowledge is very satisfying. But it also demands a level of dedication and sacrifice that not everyone may want in their life. And that’s fine too—it doesn’t make you any less valid if you don’t want this type of life. Plus, that doesn’t mean you can’t stay connected to science. So, talk to people, explore options—there are plenty out there. And that’s it (laughs).

Interviewer: And what do you think have been your biggest challenges in the field of scientific research?

Lucía: I think there have been too many. Everything is a challenge, and if it weren’t, we’d be doing something else, I think. I don’t know, I think when you’re dedicating yourself to learning, literally. There’s a point in the learning phase where you have to understand what’s happening. And that’s always a challenge when there’s no information in that field because, literally, you’re creating it yourself. It’s complex.

Interviewer: And it’s scary—you’re looking into the unknown, it’s the uncertainty, right? You have to enjoy that. How do you think we can encourage scientific vocations among young people?

Lucía: I think promoting a scientific career or this type of life comes down to making it accessible and providing good working conditions. While things have improved, they still aren’t good. Many people are still doing their PhD without getting paid because they don’t have access to a scholarship or funding source. That’s unacceptable. It’s very hard to achieve stability, a long-term career outlook, or a professional life that’s compatible with a personal life. I think that’s challenging, and I believe it’s the responsibility of authorities to promote it.

I also think there’s a societal issue. In Spain, society doesn’t see research as something necessary or even as a real job. I still get asked by people on the street or friends of my parents, “When are you going to stop doing that little course you’re taking?” And I’m like, “Wait, I’m not taking a course!” (laughs). I work in research—this is my job. It hasn’t really sunk in socially. So, if we don’t value it socially, it won’t be valued politically either, and then there won’t be funding. Sure, there are many calls for projects, etc., but the people working in this field need to be able to live, not just survive. They need to live under decent conditions. I think this is what most discourages people from pursuing a scientific career here in Spain, because it’s almost unfeasible.

Interviewer: The issue of job stability is an ongoing battle.

Lucía: To give you an idea, out of my group of friends from university who are doing research, five of us are working on our PhDs. I’m the only one doing it in Spain. Two are in Germany, and two are in the United States. Naturally, they all have a much better quality of life than I do.

Interviewer: It’s interesting because when data comes out about which professions people trust the most, scientists are at the top, even on par with doctors. People trust what scientists say. But as you pointed out, there’s a lack of societal awareness that science requires funding, public investment, and future prospects so that people who want to pursue it can have a stable career and decent working conditions. And many people who go abroad never come back because they’re treated so much better there…

Lucía: I spent 6 months working in a lab in Philadelphia, and the way they treat you—not just in terms of working conditions but also salary and work environment—is important. But what’s really key is the social recognition. Right now, to do a PhD, you need a degree, a master’s, and I’m earning almost the minimum wage, you know? We just want knowledge and qualifications to be valued in a rational way.

Interviewer: It’s not too much to ask…

Lucía: No (laughs). And I think this is important. It frustrates me that this is the reason why many people don’t go into science. There are so many brilliant and passionate people, but they eventually want to buy a house or start a family. And like this, you just can’t. And that’s the reality.

Interviewer: Let’s talk about NANBIOSIS. You work in Unit 10. Can you tell us a bit about what this unit focuses on, your role in the network, and your connection with it?

Lucía: Unit 10 is the Drug Formulation Unit. Essentially, it focuses on the development, characterization, and optimization of delivery systems for active ingredients, which could include chemical molecules, antibodies, proteins, gene therapy, and more. In short, we develop formulations that allow for the efficient delivery of these active ingredients.

This involves developing the optimal non-viral vector for each molecule, the composition of that non-viral vector, its formulation, and characterization. Additionally, we also focus on the characterization of pulmonary formulations, which is another key function of Unit 10. I believe we are a pretty advanced unit because we have pulmonary formulation characterization equipment, which is rare in Spain—there’s maybe only one other place with similar equipment.

Going back to non-invasive therapies, I think the pulmonary route is a very viable option, and it also allows us to characterize formulations intended for ophthalmic or intranasal delivery. Within this context, my role involves conducting experiments and designing them with the groups or entities that contact us to use our services or develop a project.

Interviewer: And connecting to this, how do you think NANBIOSIS can positively contribute to scientific research in the academic world?

Lucía: To be honest, before joining this lab, I didn’t know what NANBIOSIS was. When I discovered it, I thought it was a fantastic opportunity to create networks, collaborate, and connect with people, groups, and entities working on things different from your own. It’s also an ideal way to facilitate knowledge exchange between academia and industry, which I think is very important. Above all, it helps expand your mind and allows you to use your expertise to contribute to the development of others’ knowledge.

Interviewer: I imagine you’re referring to, for example, a company that needs to test a type of formulation or is looking to vectorize a drug or treatment. You provide all that support in terms of know-how, especially considering your lab is cutting-edge, with top-notch equipment and excellent academics. You have true experts in pharmacology, and a company can really benefit from that help.

Lucía: Absolutely. In fact, I think the private industry has the ability to bring the knowledge generated to the market—something that academia doesn’t have the capacity to do, due to the nature of how academia works.

In academia, knowledge is generated, and the industry has the capability to bring it to the market. But there needs to be a common ground between academia and industry for that process to happen. One of the things I like about NANBIOSIS is that it presents itself as a potential point where that connection can happen, and that’s great. As you mentioned, there are a lot of prestigious people in academia. Just to give an example, our principal investigator (PI), José Luis Pedraz, is a member of the Spanish Academy of Pharmacy.

Interviewer: In fact, José Luis Pedraz is “Académico de Número”, a Full Member of the Spanish Academy of Pharmacy—one of the top 50 pharmacists in the country!

Lucía: Absolutely. When it comes to developing formulations or understanding pharmacology processes, honestly, there are few people better in this country than José Luis Pedraz. Having the opportunity, through NANBIOSIS, to have a meeting point with industry to launch that knowledge and enhance that know-how, as you mentioned, is truly a fantastic opportunity.

Professor Jose Luis Pedraz Muñoz, director of Unit 10, officially inducted as an “Académico de Número”, the highest position within the Royal National Academy of Pharmacy.

Interviewer: Great. And how has NANBIOSIS contributed to your scientific career? I understand you work with the services NANBIOSIS offers and are developing your research—what has it provided you with professionally?

Lucía: As I mentioned, NANBIOSIS is a meeting point for different groups and entities, and it has given me the opportunity to connect and understand how people working in different research fields think. This is crucial if you’re in science. Progressing in science without interacting with other areas is almost like failing in the attempt, and José Luis understands this very well: you need to collaborate and understand all the fields developing around you.

In fact, it was one of the reasons I chose to do my PhD here—because of the culture of collaboration and working with other groups. We work with a couple of groups that are engineers specializing in developing materials and devices for medical applications. This is something you don’t initially consider, but when you have your formulation with your gene therapy all ready to go, you might then ask, “How do I administer it?” Having the opportunity to talk to people who develop delivery devices or understand that part of the process that you might not cover—because we can’t do everything—is vital for your development as a scientist and for understanding everything happening around you.

Interviewer: In addition, NANBIOSIS has a wide range of Units and a very broad, multidisciplinary service portfolio, which is absolutely essential in research and technology transfer today. In fact, this leads nicely into the next question: At NANBIOSIS, we have the Cutting Edge Biomedical Solutions, which involve combining several services from various Units to address a market problem or an industrial challenge. This aims to provide solutions to the industry on issues that require that know-how and the interconnection and synergy between the Units. You have been involved in several of these Cutting Edge Biomedical Solutions; could you give us a brief overview of them?

Lucía: Yes, currently we have three active ones, if I remember correctly. They all revolve around nanomedicines and non-viral vectors, encapsulating active ingredients, cells, genetic material, proteins, etc.

One is focused on the physicochemical characterization of these nanomedicines themselves. Having them well-characterized and studied allows us to understand exactly what’s happening and makes the scaling process easier.

Another one is about in vitro characterization of these nanomedicines. This means studying how they behave in pathological models or cellular models in two dimensions. This allows you to start fine-tuning the formulations or nanomedicines to ensure they have biological activity.

The third one is about in vivo characterization of these medicines. This helps you understand how these nanomedicines work within a more complex organism compared to a two-dimensional cell culture. Using experimental animals, you can study how they distribute within the organism, how effective they are, etc. This enables a better understanding of how the therapy works and optimizes it in a complex organism before moving on to human clinical trials.

All three together cover the necessary steps before reaching clinical trials.

Interviewer: They are essential in the transfer and translation of new therapies, and require a lot of hands-on work and cutting-edge facilities. One last question: How do you see yourself in 5 or 10 years?

Lucía: To start with, I hope to be a doctor (laughs).

Interviewer: How long have you been working on your thesis?

Lucía: Well, it’s been about two and a half years now, so we’re about halfway through. And then… I don’t know. Science is something that I really like and motivates me a lot, and it’s always been part of my life’s project. I think this happens not only to people in science: if you dedicate yourself to something that motivates you a lot and you’re willing to give it 100% every day, it becomes part of your life’s project, not just your job. But it’s not my only life project (laughs), so… we’ll see. We’ll see what opportunities arise, whether I can continue dedicating myself to science or if it stops being viable. As I mentioned before, it’s not an easy path; I might be able to pursue science… but maybe not in this country. I don’t know, we’ll see.

Interviewer: We’ll see. Thank you very much for these minutes. It’s been a pleasure, Lucía. We’ll stay in touch.

Lucía: Likewise, see you later!

You can watch the full interview here (Spanish):

What is NANBIOSIS?

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

Leading scientists

The main value of NANBIOSIS is our highly qualified and experienced academic scientists, working in public institutions, renowned universities and other research institutes.

Custom solutions

Designed for either scientific collaboration or the private industry, we adapt our services to your needs, filling the gaps and paving the way towards the next breakthrough.

Cutting-Edge facilities

Publicly funded, with the most advanced equipment, offering a wide variety of services from synthesis of nanoparticles and medical devices, including up to preclinical trials.

Standards of quality

Our services have standards of quality required in the pharmaceutical, biotech and medtech sectors, from Good Practices to ISO certifications.

In order to access our Cutting-Edge Biomedical Solutions with priority access, enter our Competitive Call here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Prof. Jose Luis Pedraz, new “Académico de Número” of the Spanish Royal National Academy of Pharmacy

Madrid, June, 2024 – In a distinguished ceremony held at the Spanish Royal National Academy of Pharmacy (Real Academia Nacional de Farmacia), Professor Jose Luis Pedraz Muñoz, a prominent figure at the University of the Basque Country, was officially inducted as an “Académico de Número”. The highest position within the Royal National Academy of Pharmacy.

Professor Pedraz, who is also a member of the CIBER-BBN and Director of Unit 10 of NANBIOSIS, took possession of “Medal Number 16”. The honor of becoming an “Académico de Número” is a prestigious recognition, from which there can only be a maximum of 50 members at a time. This acknowledes Professor Pedraz’s significant contributions to the field of pharmaceutical technology. During the event, he delivered an insightful speech titled “3D Printing and Bioprinting in Pharmaceutical Technology.”

3D bioprinting, the future of Pharma

Prof. Pedraz’s speech highlighted one of his most pioneering research areas, 3D printing and bioprinting. Together with his research group, NanoBioCel, Prof. Pedraz leads this field with new cutting-edge initiatives.

This innovative lab, which services are channeled through our Unit 10, offers bioprinting services that enable the creation of three-dimensional structures of organs and tissues, new pharmaceutical forms, micro/nano vesicles, and scaffolding for regenative medicine, to name a few.

Prof Jose Luis Pedraz ceremony

This recognition by the Royal National Academy of Pharmacy is not just a personal achievement for Professor Pedraz. It is also a testament to the innovative work being done within NANBIOSIS and CIBER-BBN. His contributions are paving the way for future advancements in pharmaceutical and biomedical research, reinforcing the importance of interdisciplinary collaboration and technological innovation in improving healthcare outcomes.

What is NANBIOSIS?

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

Leading scientists

The main value of NANBIOSIS is our highly qualified and experienced academic scientists, working in public institutions, renowned universities and other research institutes.

Custom solutions

Designed for either scientific collaboration or the private industry, we adapt our services to your needs, filling the gaps and paving the way towards the next breakthrough.

Cutting-Edge facilities

Publicly funded, with the most advanced equipment, offering a wide variety of services from synthesis of nanoparticles and medical devices, including up to preclinical trials.

Standards of quality

Our services have standards of quality required in the pharmaceutical, biotech and medtech sectors, from Good Practices to ISO certifications.

In order to access our Cutting-Edge Biomedical Solutions with priority access, enter our Competitive Call here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Prof. Pilar Marco takes helm of CIBER-BBN: Leading the future of Bioengineering, Biomaterials, and Nanomedicine

Barcelona, June 21, 2024 – Prof. Pilar Marco has been appointed as the new head of the Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN) thematic area at the Centro de Investigación Biomédica en Red (CIBER). This prestigious appointment was confirmed during the CIBER Governing Board meeting held on June 20, 2024. Prof. Marco succeeds Ramón Martínez, bringing a wealth of expertise and a distinguished track record in biomedical research for more than a decade.

Prof. Marco is a research professor at the Consejo Superior de Investigaciones Científicas (CSIC), specifically at the Institute of Advanced Chemistry of Catalonia (IQAC) in Barcelona. Additionally, she leads the Nanobiotechnology for Diagnosis research group and is the Scientific Director of our Custom Antibody Service, the Unit 2 of NANBIOSIS, as well as the coordinator of the Nanomedicine Research Program at CIBER-BBN.

An expert in antibodies and immunoassays

Recognized as an international authority in antibody-based technologies and the development of immunoassays for diagnostic purposes, Prof. Marco’s impressive academic and research portfolio includes 225 published articles and the supervision of 32 doctoral theses. She has also served as Principal Investigator in 14 European projects and over 20 national projects.

Her contributions to scientific innovation are evident in her dedication to knowledge transfer. Prof. Marco holds 15 patents and has signed 36 contracts with various companies, six of which are for commercial exploitation. Her work aims to bridge the gap between research and practical applications, ultimately improving the quality of life in society.

A new chapter in scientific collaboration

In addition to her role at CIBER-BBN, Prof. Marco coordinates the Strategic Diagnostic Initiative of the PTI+ Global Health and serves on the Technical Committee of the National Center for Certification of Health Products. Her leadership and vision are expected to propel CIBER-BBN into new frontiers of research and development in bioengineering, biomaterials, and nanomedicine.

Pilar Marco, Fernando Artalejo and Didac Mauricio

Joining Prof. Marco in the new leadership appointments are Fernando Artalejo, who will head the CIBER for Epidemiology and Public Health (CIBERESP), and Didac Mauricio, who will lead the CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM). Together, these appointments mark a significant step forward in CIBER’s mission to advance biomedical research and improve public health.

Prof. Pilar Marco’s vision and expertise are set to drive CIBER-BBN’s mission forward, enhancing its contributions to scientific discovery and the development of cutting-edge biomedical technologies. Her leadership promises to strengthen collaborations and foster innovations that will benefit both the scientific community and society at large.

We congratulate Prof. Marco on her new role and look forward to the remarkable advancements that will undoubtedly emerge under her guidance.

What is NANBIOSIS?

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

Leading scientists

The main value of NANBIOSIS is our highly qualified and experienced academic scientists, working in public institutions, renowned universities and other research institutes.

Custom solutions

Designed for either scientific collaboration or the private industry, we adapt our services to your needs, filling the gaps and paving the way towards the next breakthrough.

Cutting-Edge facilities

Publicly funded, with the most advanced equipment, offering a wide variety of services from synthesis of nanoparticles and medical devices, including up to preclinical trials.

Standards of quality

Our services have standards of quality required in the pharmaceutical, biotech and medtech sectors, from Good Practices to ISO certifications.

In order to access our Cutting-Edge Biomedical Solutions with priority access, enter our Competitive Call here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Cardiovascular disease and Computation: an innovative lecture by Prof. Shirley Jansen

Tomorrow, on the 30th of May, our Tissue & Scaffold Characterization Unit 13 organises the Conference “Understanding cardiovascular disease by means of Computation Fluid Dynamics” by Prof. Shirley Jansen.

The event will take place at 12:30 in the I3A Seminar Room, Block 5, 2nd floor of the R&D Building in Campus Rio Ebro of Universidad de Zaragoza.

Prof. Jansen is passionate about the importance of working alongside engineers to understand the mechanics behind many vascular pathologies such as aortic aneurysm, dissection, and peripheral arterial disease, and why close collaboration via a shared language of haemodynamics can shed light on risk prediction, inform patient specific intervention and optimise outcomes. Understanding of device failure mechanisms in pressurised circuits will inform innovation of next generation devices but the way in which we handle the use of assumptions in CFD in particular, is crucial to the engagement between vascular surgeons and bioengineers.

About the speaker

Professor Shirley Jansen

Prof. Shirley Jansen

Professor Shirley Jansen is Joint Program Head of Cardiovascular Science and Diabetes as well as Director of the Heart and Vascular Research Institute at the Perkins and has led her unit to great success in first in man, pharmacological and device related trials in vascular disease. She is also Head of Dept of Vascular and Endovascular Surgery at Sir Charles Gairdner Hospital, a busy quaternary unit overseeing 900 in-patients per year. She was awarded PhD in 1999 and The Sustained Overall Clinical Excellence Award from Sir Charles Gairdner Hospital in 2016.

She has run over 30 government and industry sponsored clinical trials, the majority as PI/site PI. She supervises six PhDs and four Masters and numerous other projects covering a wide range of vascular pathologies. Her main research interests since PhD are in the clinical management of carotid, peripheral vascular disease, diabetic foot disease and venous leg ulcers, as well as the interface with bioengineering and innovation.

Jansen has wide experience in all aspects of vascular, endovascular surgery, perioperative care and prevention and health outcomes. She has published over 60 research papers and five chapters, and given over 50 presentations at national and international meetings. She has received eight travelling fellowships in her career. She is also an inventor, and convenor of two national/international vascular surgical training workshops. Shirley is actively engaged in cross-disciplinary collaborations locally and internationally in the areas of imaging, treatment modalities and outcomes for vascular diseases.

What is NANBIOSIS?

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

Leading scientists

The main value of NANBIOSIS is our highly qualified and experienced academic scientists, working in public institutions, renowned universities and other research institutes.

Custom solutions

Designed for either scientific collaboration or the private industry, we adapt our services to your needs, filling the gaps and paving the way towards the next breakthrough.

Cutting-Edge facilities

Publicly funded, with the most advanced equipment, offering a wide variety of services from synthesis of nanoparticles and medical devices, including up to preclinical trials.

Standards of quality

Our services have standards of quality required in the pharmaceutical, biotech and medtech sectors, from Good Practices to ISO certifications.

In order to access our Cutting-Edge Biomedical Solutions, place your request here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Temperature-sensitive hydrogels: A pioneering therapeutic approach for ovarian cancer

A new project with the participation of NANBIOSIS Unit 20 pioneers thermosensitive hydrogels for localized ovarian cancer treatment, minimizing side effects and enhancing efficacy.

May 2024, VHIR/FVPR/CIBER-BBN (Barcelona). As the world recently commemorated Ovarian Cancer Day, from NANBIOSIS we proudly highlight the groundbreaking work of our collaborators in the fight against this deadly disease. Ovarian cancer stands as the seventh leading cause of cancer-related deaths, with Europe bearing the brunt of its impact, recording over 44,000 fatalities annually.

In a bid to revolutionize treatment paradigms and enhance patient outcomes, researchers at the Clinical Biochemistry, Drug Delivery and Therapy (CB-DDT) Group, in close collaboration with NANBIOSIS Unit 20, are spearheading an innovative project focused on intraperitoneal drug delivery for ovarian cancer.

Traditionally, ovarian cancer treatment has been marred by the limitations of systemic chemotherapy, often leading to severe toxicities and treatment resistance. To address these challenges, the team led by Dr. Diana Rafael has embarked on developing a novel therapeutic approach using thermosensitive hydrogels (HG) for sustained intraperitoneal drug release.

By utilizing temperature-sensitive hydrogels, our researchers can deliver chemotherapeutic agents directly to the abdominal cavity, minimizing systemic side effects and enhancing therapeutic efficacy.

As explained by Dr. Rafael, this project aims to provide a new, localized treatment strategy for ovarian cancer patients. In this regard, the group’s multidisciplinary expertise spans pharmaceutical technology, nanomedicine, and cancer biology. Thus, by utilizing temperature-sensitive hydrogels, our researchers can deliver chemotherapeutic agents directly to the abdominal cavity, minimizing systemic side effects and enhancing therapeutic efficacy.

About the project:

The two funding sources, aptly named SmartTheC and HydroTheC, are granted by the La Caixa Foundation and the European Commission, respectively. It focuses on the development of eco-friendly and biodegradable hydrogels capable of prolonged drug release, thereby reducing the need for repeated treatments and improving patient quality of life. These HG are liquid at room temperature, facilitating their administration, and then turn into a gel upon exposure to the body temperature.

One of the key innovations of this approach lies in the incorporation of nanoparticles within the hydrogel matrix, enabling a “multi-compartment” system capable of releasing different drugs at varying rates.

One of the key innovations of this approach lies in the incorporation of nanoparticles within the hydrogel matrix, enabling a “multi-compartment” system capable of releasing different drugs at varying rates. This versatility is crucial for personalized treatment regimens and overcoming drug resistance.

The aim is to significantly enhance the therapeutic window of drugs and improve patient survival. Moreover, the biodegradability and extended residence time of the formulation offer distinct advantages over existing treatment options, paving the way for easy translation to clinical application.

The project’s preclinical validation phase, which includes in vivo experiments utilizing advanced cancer models established by our Unit 20, is being conducted in close collaboration with specialist ovarian cancer physicians from HUVH, ensuring alignment with patient needs and clinical realities.

The culmination of these efforts promises not only improved outcomes for ovarian cancer patients but also significant reductions in healthcare costs associated with treatment. Finally, this approach could be easily adapted to many other existing treatments that require local administration thanks to its versatility and easy adaptation.

Funding of the project:

SmarTheC: “Eco-sustainable Smart Hydrogels for the Sustained Intraperitoneal Release of Chemotherapeutics as a Novel Local Therapy Approach for Advanced Ovarian Cancer” (143178), La Caixa Foundation (Starting on 31/12/2024), Principal Investigator: Diana Rafael

HydroTheC: Biodegradable and Eco-friendly Smart Hydrogels for the Sustained Intraperitoneal Release of Chemotherapeutics as a Novel Local Therapy Approach for Advanced Ovarian Cancer” (101107735), Global MSCA-PF Granted to: Diana Rafael, European Commission.

About NANBIOSIS:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our Cutting-Edge Biomedical Solutions, place your request here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

2nd Open call 2024 for preferential access to the ICTS NANBIOSIS

NANBIOSIS opens in June the 2nd competitive open call 2024 for our “Cutting-Edge Biomedical Solutions” and services.

Our publicly funded facilities and internationally renowned scientist will help you design and test biomedical solutions to your heart’s content. We are open to all interested national and international users who may come either from the public or the private sector. You can apply to use our services in two modalities: under the “Competitive Open Access” (within two designated calls) or by “Access on Demand”, your choice.

To make that happen, at least 20% of the NANBIOSIS Units’ capacity is granted on the Competitive Open Access modality. The proposals granted under this modality will be prioritized according to criteria of scientific and technical quality and singularity. In addition, a 5% discount will be applied for those proposals that resort to at least one of our integrated services, the Cutting-Edge Biomedical Solutions.

NANBIOSIS is a research infrastructure for Biomedicine in which three cutting-edge public institutions collaborate forming a deeply interconnected laboratory network: CIBER-BBN, CCMIJU and IBIMA-Plataforma BIONAND. In addition, NANBIOSIS is part of the Spanish Map of ICTS (Spanish for “Scientific and Technical Unique Infrastructures”), approved by the Spanish Ministerio de Ciencia, Innovación y Universidades .

There are 2 calls per year for Competitive Open Access that allow the prioritization of the best proposals. Click here to apply.

The next call will open on June 1st. The applications can be submitted throughout the whole month (due date June 30th). Access application forms submitted after that date will be processed under the “Access on Demand” modality.

Proposals granted in the Competitive Open Access modality must meet, at least, one of the circumstances listed in the access application form (“order request“), in order to demonstrate their scientific and technical quality or singularity.

Thus, for example, applications related to R&D projects funded through national or European calls are eligible. In addition, the proposals are required to use one of the NANBIOSIS Cutting-Edge Biomedical Solutions”. That implies the interaction of at least two of our Units, which can be modified to your specific needs.

NANBIOSIS Cutting-edge Biomedical Solutions

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Last seat: Our Training in Spectroscopy and MRI for animal testing applications is still open.

Do not miss the chance to join our hands-on XV Workshop of Theoretical-Practical Training in MRS / MRI, with specific application in laboratory animals

Our excellent teacher Dr. Silvia Lope will be at the helm in this practical workshop. And it provides all the required skills users need to operate our fantastic Biospec, available as a service in our Unit 25.

The registration period for the “XV Workshop of Theoretical-Practical Training in Spectroscopy and Magnetic Resonance Imaging (MRS / MRI): Application in Laboratory Animals” is still open until May the 17th, 2024. This workshop is organized by the Department of Biochemistry and Molecular Biology and the Nuclear Magnetic Resonance Service of the Autonomous University of Barcelona, and will take place from May 28 to 30, 2024.

The aim of this workshop is to serve as an introduction to the application of the Magnetic Resonance Imaging (MRI) technique in preclinical studies.

The aim of this workshop is to serve as an introduction to the application of the Magnetic Resonance Imaging (MRI) technique in preclinical studies. The fundamental theoretical concepts that allow understanding the operation of the technique will be explained, with special emphasis on practical application with small animals using our state of the art 7 Teslas Bruker Biospec spectrometer.

The workshop is aimed at students and researchers who want to get started in spectroscopy and magnetic resonance imaging techniques applied to laboratory animals.

How do I apply?

If you are interested, you can download the brochure and the registration form at https://tinyurl.com/XVpreclinicalMRIMRSworkshop. For registration, just submit the registration form back by e-mail to the following address: silvia.lope@uab.cat.

The number of participants is limited to 4 people, and there is one seat left. Do not miss this opportunity!

About NANBIOSIS:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our Cutting-Edge Biomedical Solutions, place your request here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

New cathalitic therapy for destroying key molecules within tumor cells

The prestigious journal Nano Letters published the work led by NANBIOSIS researchers, affiliated with Unizar, INMA (CSIC-UNIZAR), CIBER–BBN, and IIS Aragón.

The successful development of this innovative treatment approach was possible through the efforts of our Unit 9, led by Prof. Santamaría and Dr. Hueso, both corresponding authors of the publication.

As recently announced by Universidad de Zaragoza (Unizar), a team led by NANBIOSIS researchers at the Instituto de Nanociencia y Materiales de Aragón (INMA, a joint institute of CSIC and UNIZAR) has discovered a way to artificially conduct a new chemical reaction, called transamination. This approach can act within cancer cells to destroy molecules vital for the development and growth of tumor cells. The prestigious journal Nano Letters have recently published this work, led by Unizar professors and researchers Javier Bonet–Aletá, José Luis Hueso, and Jesús Santamaría, also affiliated with NANBIOSIS, INMA (CSIC-UNIZAR), CIBER–BBN, and IIS Aragon.

The technique aims to replace current chemotherapy, carrying catalysts that either generate toxic molecules inside the tumor or eliminate molecules it needs to keep growing.

Catalytic therapy constitutes a new strategy in the fight against cancer, aiming to trigger harmful chemical reactions for the tumor. Ultimately, the goal is to replace current chemotherapy by carrying catalysts that either generate toxic molecules inside the tumor or eliminate molecules necessary for its proliferation.

Regarding eliminating key molecules, first published in 2015, catalysts targeted either glucose, an important energy source for cancer cells; or glutathione, an antioxidant that protects tumor cells from highly reactive radical species. The later is partly responsible for these cells’ resistance to chemotherapy treatments. Both glucose and glutathione can be eliminated through oxidation reactions. However, this is especially challenging to apply due to the scarcity of oxygen in the hypoxic tumor environment.

The publication:

This study holds special importance not only because it opens the field to new reactions of interest in oncology, but also because it does so in a process – transamination – that does not require oxygen to occur. This eliminates the main restriction of catalytic therapies. The reaction operates on amino acids, essential components that cells use to produce proteins, and also pyruvate, a small and abundant molecule involved in the main energy acquisition pathway in the cell. The reaction between them reduces the levels of amino acids and pyruvate in cancer cells, leading them to a critical state and halting their expansion and growth.

Graphical abstract of the publication. Read the full article in: Nano Lett. 2024, XXXX, XXX, XXX-XXX

During transamination, an amino group is exchanged between an amino acid and pyruvate, generating a substance that the cell cannot easily utilize. Our researchers demonstrated this by reacting pyruvate with various amino acids, such as glutamine, aspartic acid, glutamic acid, or glutathione itself. However, transamination has one drawback: it is catalyzed by copper atoms, whose flow through the cell membrane under normal conditions is highly restricted. To overcome this limitation, researchers designed nanoparticles containing this metal, enhancing internalization into tumor cells. Once internalized, the nanoparticle dissolves, releasing copper atoms that act as catalysts in the transamination reaction.

In addition of Dr. José Luis Hueso, and Dr. Jesús Santamaría, other members of Unizar also participated, such as Dr. Javier Martin–Martin from the Department of Organic Chemistry and INMA, and Dr. Miguel Encinas–Giménez, Dr. Ana Martín–Pardillos, and Dr. Pilar Martín–Duque, who are also members of the Aragon Health Research Institute (IIS), as well as Dr. Juan Vicente Alegre Requena, a CSIC scientist at the Institute of Chemical Synthesis and Homogeneous Catalysis, ISQCH, a joint CSIC-UNIZAR institute.

References:

[1] Nanoparticle-Catalyzed Transamination under Tumor Microenvironment Conditions: A Novel Tool to Disrupt the Pool of Amino Acids and GSSG in Cancer Cells. Javier Bonet-Aleta, Juan Vicente Alegre-Requena, Javier Martin-Martin, Miguel Encinas-Gimenez, Ana Martín-Pardillos, Pilar Martín-Duque, Jose L. Hueso, and Jesús Santamaria
Nano Letters, 2024 doi: 10.1021/acs.nanolett.3c04947

About NANBIOSIS:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our Cutting-Edge Biomedical Solutions, place your request here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

Protein-only Materials offer a new hope in colorectal cancer treatment

Breakthrough colorectal cancer treatment unveiled by NANBIOSIS Units promises enhanced precision & efficacy in targeted cancer therapies.

March 2024, UAB/Institut de Recerca Sant Pau/CIBER-BBN (Barcelona)

As we leave World Colorectal Cancer Day 2024 behind, marked on March 31st, there have been significant highlights in cancer treatment, a field in which targeted therapies are playing a crucial role.

In this context, researchers from the Nanobiotechnology team, at the Institut de Biotecnologia i de Biomedicina from Universitat Autònoma de Barcelona, led by Prof. Antonio Villaverde, in collaboration with the Oncogenesis and Antitumor Drugs team led by Prof. Ramón Mangues at Institut de Recerca Sant Pau, have made a significant breakthrough in the treatment of colorectal cancer. Their innovative approach, facilitated by their respective Unit 1 and Unit 18 of NANBIOSIS, promises to revolutionize current treatment methodologies and improve patient outcomes.

“In a clinical context, the use of these materials in the treatment of colorectal cancer should greatly improve the drug’s efficacy and patient comfort while minimizing unwanted side effects.”

Prof. Antonio Villaverde, Strategy Director of Unit 1

“It is important to highlight that such accumulation is more effective than when the protein is administered into the bloodstream. This fact offers a new and unexpected way to ensure high local levels of the drug and better clinical efficacy, avoiding repeated intravenous administration regimens,” explains Prof. Villaverde. “In a clinical context, the use of these materials in the treatment of colorectal cancer should greatly improve the drug’s efficacy and patient comfort while minimizing unwanted side effects.”

The team’s groundbreaking research centers around the development of self-contained protein-only materials at the microscale, capable of delivering therapeutic polypeptides in a time-prolonged manner. These materials, resembling the organization of secretory granules within the human endocrine system, are engineered to release functional polypeptide nanoparticles. These nanoparticles can selectively target tumors and destroy specific types of cancer cells, offering a promising avenue for more effective and precise cancer treatment.

The publication:

Notably, the researchers thorougly explored the molecular structure and dynamics of the secretion process of these materials, both in vitro and in vivo. In preclinical trials using an animal model of colorectal cancer, the system demonstrated remarkable efficacy upon subcutaneous administration. This was thanks to the released protein nanoparticles accumulating efficiently in tumor tissues. Importantly, this accumulation was found to be more effective than traditional intravenous administration methods, offering a novel strategy to ensure high local drug levels while minimizing systemic side effects.

A) Diagram illustrating theprotein administration protocol in a colorectal cancer mouse model. B) Accumulation of fluorescence in the tumour at days 1 and 10 after the administration, in two alternative formats (“IN” and “MPs”). Research product of a collaboration between NANBIOSIS Unit 1 and Unit 18. For more information, check the full publication at Adv. Sci. 2024, 2309427.

Furthermore, several competitive research and technology transfer projects supported this research, as well as intramural CIBER-BBN projects. This further highlights the importance of interdisciplinary collaboration and funding initiatives in driving scientific progress.

The team’s work underscores the importance of continued investment in research and collaboration to tackle the challenges posed by colorectal cancer and other malignancies. As World Colorectal Cancer Day is observed globally, this breakthrough offers hope for a future where innovative treatments pave the way for improved outcomes and enhanced quality of life for cancer patients worldwide.

The successful development of this innovative treatment approach was possible through the collaborative efforts of two NANBIOSIS Units: the Protein Production Platform (Unit 1) and the Nanotoxicology Unit (Unit 18).

References:

[1] J. M. Sánchez, H. López-Laguna, E. Parladé, A. D. Somma, A. L. Livieri, P. Álamo, R. Mangues, U. Unzueta, A. Villaverde, E. Vázquez, Structural Stabilization of Clinically Oriented Oligomeric Proteins During their Transit through Synthetic Secretory Amyloids. Adv. Sci. 2024, 2309427. https://doi.org/10.1002/advs.202309427

About NANBIOSIS:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our Cutting-Edge Biomedical Solutions, place your request here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More