+34 679 490 537info@nanbiosis.com

Posts Taged coronavirus

“We need a drastic change in the organization and management of science”

The Jorunal “Redacción Médica” has created an espace call Covid-19 Lessons to gather critical evaluations and recommendations of the most relevant personalities in the health sector, so that the National Health System and the professional and business ecosystem that surrounds it can draw conclusions and face future similar challenges with greater guarantees.

Laura M. Lechuga, Scientific Director of NANBIOSIS U4, from CIBER-BBN at ICN2-CSIC, coordinates CONVAT, one of the projects selected by the European Commission to advance in the knowledge about the Coronavirus, adds her perspective to the document Covid-19 Lessons: “We need a drastic change in the organization and management of science

According to prof. Lechuga, ·one of the main successes in this crisis has been the intense and excellent dedication of a large part of the international scientific community who, from a multidisciplinary perspective, has tried to contribute their talent and training to make great strides in the knowledge of this new SARS-CoV-2 virus; this crisis has driven this collaboration exponentially. “The rapid mobilization of funds and resources available to scientists has also been (and continues to be) impressive during this crisis. The pandemic has placed before the eyes of all humanity that the greatest values of our society lie in knowledge, training, science and research to face a problem of these dimensions that unfortunately may be repeated in the future.

As main errors, Laura Lechuga highlights the disconnection between the scientific and political world. “The scientits had contributed its knowledge and rigorous studies to warn of the dangers that lie in wait for us, but it is clear that until now the connection between scientific advice and government policies is extremely weak, not only in our country. country but also internationally”

Possibly, at the national level, our scientific system could have given a faster response if it had been much more robust and competitive and had not been so weakened due to the numerous cuts suffered since the previous crisis and the lack of replacement of researchers. Our research environment, although it is nourished by a lot of talent, is not so much in its own development resources, infrastructures and technologies, so its contribution is being more limited.

There is no doubt that we need a decided investment in science both in terms of human and material resources, and a drastic change in the organization and management of science, which causes our scientists to invest most of their valuable time in requests for funding, resources human and cumbersome administrative justifications, which have little to do with scientific research“.

Read More

CoNVaT, the ‘Nanotrap’ for the coronavirus – highlighted by BBVA Fundation

Prof. Laura M. Lechuga, Scientific Director of NANBIOSIS Unit 4 Biodeposition and Biodetection Unit (from CIBER-BBN and ICN2-CSCIC) was awarded with the Physics, Innovation and Technology Award of the Royal Spanish Physics Society (RSEF) and the BBVA Foundation 2016.

BBVA Foundation has dedicated an article to explain the  EU CoNVaT project, led by Laura Lechuga, whose objective is to obtain a diagnostic test for COVID-19 from the first day of infection, fast but highly sensitive, and which does not require a laboratory or qualified personnel. A test made with extremely sophisticated technology, and at the same time low cost, applicable to future waves of the epidemic. It is financed with more than two million euros by the European Union with a duration of one year.

The test is a biosensor that uses nanophotonics, and it will be used in two devices: one will detect virus proteins, the other, its genetic material. The heart of the device, and what gives it its main advantage over other existing diagnostic tests, is a chip that implements one of the most sensitive measurement techniques in physics: photonic interferometry. It is based on the idea that a beam of light undergoes small but measurable changes when it intersects an object. On the CoNVaT project chip, changes in the light beam will alert to the presence of the virus in the sample.

The test that will detect virus proteins is what is technically called an ‘antigen test’. It can be carried out in health centers or at sampling points, by non-specialized staff, and will give results in less than thirty minutes. Saliva samples will surely be used, although researchers are still studying it.

“The technique is so sensitive that it will be able to detect the presence of the virus from the first day of infection,” explains Lechuga. “And it will not only tell if the virus is or not, but also in what quantity. This is important because it gives an idea of ​​how advanced the infection is. ”

‘Nanotrap’ for the coronavirus

The device will occupy what a shoe box, but at its core, where the measurement takes place, everything happens on a nanometric scale, that is, to dimensions of millionths of millimeters. It is, in essence, a nanotrap for proteins. Researchers attach proteins designed in the laboratory specifically to trap certain proteins in the virus envelope to the chip; both fit as a key and lock, so that the proteins fixed on the chip are actually hooks of the highest specificity – they only capture the virus’s proteins.

Channels a few nanometers thick have also been engraved on the chip: light passes through them. These guides form a circuit with a single input, but which forks, so that only one of the branches passes through the protein trap. When both light beams meet again, it is observed that the one that has interacted with the proteins has undergone modifications, and it is the analysis of these changes that reveals the presence of the virus, and in what quantity.

The device to detect genetic material of the virus -RNA- is based on the same principle, but it should be done in the laboratory. Lettuce explains that its purpose will be above all to confirm the result of the first. It will be faster than the PCR currently used – less than half an hour versus several hours – and it does not need specialized technicians – something indispensable with PCR.

Biology is the most difficult

“In this type of device, the biological part is by far the most complex,” explains Lechuga. Anchor the proteins to the chip at the correct angle, stabilize them to resist movement, keep them in a liquid medium … “they are thirty steps”.

It is a very sophisticated technology but already validated in the clinic. The ICN2 Biosensors and Bioanalytical Applications Group led by Lechuga has developed, among others, nano-biosensors that detect colon cancer early in blood samples, and also for tuberculosis and sepsis cases. “One of the reasons we have achieved the ConVAT project is that we have experience with clinical samples, which is really a completely different world than the laboratory.”

The group advances fast. They started working about three weeks ago and have just received from their French collaborators proteins that match those of the virus. Patient validation, when the device is completed, will be handled by the group in Italy.

The objective, at the end of the project, is for a company to take care of scaling the technology to bring it to the market at an affordable price. “Especially in a situation like the current one, we work with the idea that our work can reach everyone, as soon as possible,” says Lechuga.

Further information in Spanish in the original article by MÓNICA G. SALOMONE BBVA Foundation

Read More

NANBIOSIS U27 researchers working in an App for the early diagnosis of covid-19 through mobile phones

Bsicos group researchers, from the I3A (Engineering Research Institute) of the University of Zaragoza and CIBER-BBN), Dr. Jesús Lázaro, Dr. Eduardo Gil, Dr. Raquel Bailón and Dr. Pablo Laguna, are working on a line of work for the search of solutions for the early diagnosis of Covid-19 cases, through the development of an App for mobile phones.

For almost three years, Dr. Jesús Lázaro, under the supervision of Professor Pablo Laguna, from the resarch group Bsicos, which coordinate Nanbiosis U27 High Performance Computing , have been working on the European project WECARMON (Wearable Cardiorespiratory Monitor) for the development of an ambulatory system that would allow monitoring the cardiac and respiratory rhythm of patients with Clinical Obstructive Pulmonary Disease (COPD) and thus control and predict episodes of worsening of the disease.

However, the current situation of pandemic due to the SARS-CoV-2 coronavirus has led the researchers, with the approval of the European Commission, to temporarily redirect their objective, foccusing their work in search of solutions for the early diagnosis of the covid-19.
 
The work carried out for patients with a respiratory disease such as COPD could now serve for the early detection of people with symptoms of covid-19, before even having fever, but also for asymptomatic people, since the rapid variation of these parameters is known. in the initial stages of other respiratory conditions. Our researchers will use these cardiac and respiratory parameters, indirect markers of the autonomic nervous system and, therefore, sensitive to the response of the immune system, potentially helping to identify possible cases of covid-19 earlier. A technological tool that could join the fight to control this pandemic.

Jesús Lázaro has recently made a two-year stay at Connecticut University in the United States, partner of the WECARMON project in which he was working with Pablo Laguna. Two other researchers from the Bsicos group, Dr. Raquel Bailón and Dr. Eduardo Gil, have also decided to redirect their lines of research and focus on the SARS-CoV-2 coronavirus. Re-directing research lines with different objectives to join the fight against the coronavirus is a great challenge and shows the relenvance of cutting-edge research to provide answers to the arising challenges in our society.
 
Jesús Lázaro explains that the application they are working on would allow a pre-selection of people at risk by analysing markers of the autonomic nervous system that would be measured on a mobile phone. ” At this moment, the above-mentioned four researchers have already developed the algorithms for other platforms and they are working now on an App using the technology of the cameras and the flashlight of the mobiles. A sudden change in heart rate variability or an increase in respiratory rate could give a sensitive and early warning, to resort to other more specific diagnostic tests for covid-19, decreasing the latency time, which has been sadly shown key in this pandemic. The developments and validation, those already made and those planned, are being carried out using NANBIOSIS U27 High Performance Computing (I3A-Unizar/ CIBER-BBN)

The WECARMON project is funded by the H2020 Research and Innovation Program of the European Commission. It is part of the Marie Sklodowska-Curie Individual Actions, whose objective is to promote the professional career of young and brilliant researchers, expanding their knowledge through training, stays abroad and internships, in order to help them develop all their potential as researchers.

Related news:

Read More

Laura Lechuga talks about CONVAT, the project for a faster and cheaper diagnose of COVID-19

Prof. Laura M. Lechuga, Scientific Director of NANBIOSIS Unit 4 Biodeposition and Biodetection Unit (from CIBER-BBN and ICN2-CSCIC) has been today interview by Cadena Ser Radio in the program “Hoy por Hoy”

The interview can be listened in the following podcast, begining at 44 minute.

‘Convat’ is a nanotechnological device with biosensors capable of determining in less than half an hour the presence of coronavirus in a person. A sample saliva is deposited on a nanochip three centimeters long. If the saliva contains the virus, it will bind to antibodies located on the nanochip. A beam of light will be passed through the device so that the light will change if it encounters the virus and antibody in its path. The light will be analyzed automatically and the result will be transmitted to a smartphone or tablet. In less than 30 minutes a positive or negative result would be obtained and, in case of detecting the presence of the virus, in another 30 minutes at most the reconfirmation would be obtained. It is not intended for domestic use, but neither will a specialist technician be needed and it could be carried out in a massive way.

Simpler, cheaper and easier than current methods, this rapid diagnostic kit will not be ready for the first wave of the coronavirus, but it can be useful to detect it later if this virus is here to stay.

Yesterday, Laura Lechuga was also invited to explain the CONVAT project to the spanish television programe “A partir de hoy“.

‘Convat’, la prueba que puede detectar el coronavirus

https://twitter.com/FAQSTV3/status/1238968335192162306

Prof Laura Lechuga was also interviwed by TV3 in the program Planta Baixa 

More information here

Read More

COVID-19 diagnose, faster and cheaper.

In order speed up research into the coronavirus, the European Commission recently announced a special call for projects to tackle the COVID-19, based on already developed technologies. Projectcs were prepared in a record time and 17 proposals have been awarded founds, 6 of them with spanish colaboration and only one coordinated by Spain

CONVAT is a cooperation project between Spain, Italy and France coordinated by Prof. Laura M. Lechuga, Scientific Director of NANBIOSIS Unit 4 Biodeposition and Biodetection Unit (from CIBER-BBN and ICN2-CSCIC) and also participated by the group of Prof. Jordi Serra Cobo from the University of Barcelona, having extensive experience in the study of coronavirus in animals and its epidemiology; Prof. Remi Charrel‘s laboratory at the University of Marseille (France), leader in virology and molecular biology, pioneering the development and production of biological material for the validation of new diagnostic systems and the Italian National Institute of Infectious Diseases (INMI), where researchers from Dr Antonino Di Caro‘s laboratory were among the first to sequence the SARS-CoV-2 coronavirus, and which is the reference institute for the analysis and diagnosis of COVID-19

CONVAT will develop a point-of-care platform, for rapid diagnosis and monitoring of coronavirus, directly from the patient’s sample and without the need for testing in centralized clinical laboratories. The new device based on optical biosensor nanotechnology is espected to become massively available in less than 12 months. The project indeed aims to extend beyond the current pandemic and the human diagnosis. The new biosensor will also be used for the analysis of different types of coronavirus present in reservoir animals, such as bats, in order to observe and monitor possible evolutions of these viruses and prevent future outbreaks in humans

Read More