+34 679 490 537info@nanbiosis.com

Posts Taged cancer-treatment

A new compound removes senescent cells and reduces toxicity in cancer treatment

  • Scientists of NANBIOSIS unit 26 NMR: Biomedical Applications II, (of CIBER-BBN and the Universitat Politècnica de València), together with researchers from the Principe Felipe Research Center and the University of Cambridge confirm the therapeutic potential of using a new conjugated drug, Nav-Gal, in combination with chemotherapy

  • Nav-Gal selectively removes tumourigenic senescent cells without attacking healthy cells and reduces the toxicity of platelets

The accumulation of senescent cells plays a significant role in cancer pathogenesis and other diseases. However, senolytic drugs (intended to remove senescent cells) present significant toxicity, which limits their therapeutic benefits.

Now, a new international study involving researchers at CIBER-BBN, the Universitat Politècnica de València (UPV) and the Principe Felipe Research Center, in collaboration with the University of Cambridge, have just proved the efficiency of a new conjugated drug, Nav-Gal, which selectively removes senescent cells, minimising the effect on healthy cells and reducing toxicity through this therapy. The use of this drug in combination with chemotherapy could be confirmed as a promising strategy in treating cancer. The auspicious results of this study have been published in the journal Aging Cell.

Senescent cells: the target

Senescence is a response to cell damage and stress characterised by the arrest of the cell cycle. When aging, cells permanently stop dividing, thus preventing the propagation of damaged and dysfunctional cells. However, eventually, a massive quantity of senescent cells accumulate in tissues, resulting in the onset and progression of multiple disorders, including diabetes, cardiovascular diseases, lung fibrosis, neurological disorders or cancer. Moreover, in the case of cancer, several chemotherapies result in cell senescence, and this accumulation of senescent cells due to the treatments has been related to tumourigenesis, associated with metastasis and the recurrence of tumours in different types of cancer. That is why the search for new drugs that remove senescent cells induced by cancer treatments is a key question in order to guarantee the total eradication of the tumour and prevent them from recurring.

On this front, senolytic drugs (compounds that kill senescent cells using several mechanisms) are a promising therapeutic alternative in oncology and for treating other diseases related to the accumulation of senescent cells. However, today senolytics present a low specificity because they also damage healthy cells, and have significant toxicities, which reduce their therapeutic benefits.

Reducing toxicity and preventing “collateral damages”

In this new study, published in Aging Cell, researchers at CIBER-BBN, the Universitat Politècnica de València (UPV) and the Principe Felipe Research Center, in collaboration with researchers from CRUK, at the University of Cambridge, worked on the design of a second-generation senolytic, which is more specific and less toxic. They focused on Navitoclax, a drug validated in preclinical models that proved to have a high capacity to destroy senescent cells, modifying it with acetylated-galactose.

The new compound, called Nav-Gal, results in a drug with selective, wide-ranging senolytic activity, which induces the death of senescent cells while preserving the activity of healthy cells.

“To summarize, we suggest the galactose conjugation with certain drugs as a versatile methodology to develop second-generation prodrugs with high senolytic activity and reduced toxicity,” explains Ramón Martínez Máñez, member of the Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) of the Universitat Politècnica de València, Scientific Director of CIBER-BBN and one of the study’s coordinators.

The researchers tested this drug in combination with chemotherapy (cisplatin) in human lung cancer cells, proving that treatment with cisplatin and Nav-Gal results in the eradication of senescent lung cancer cells and significantly reducing tumour growth. “This study provides evidence of the potential clinical application of combining senescence-induction chemotherapies with senotherapies in cancer,” explains Daniel Muñoz Espín from the CRUK Early Detection Programme of the University of Cambridge. Moreover, the compound Nav-Gal reduced platelet toxicity and the thrombopenia (reduction of the platelet circulation in bloodstream) caused by the previous drug, Navitoclax.

Reference article:

Galacto‐conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity

https://onlinelibrary.wiley.com/doi/full/10.1111/acel.13142


About CIBER-BBN

CIBER (Consorcio Centro de Investigación Biomédica en Red, M.P.) belongs to the Institute of Health Carlos III of the Spanish Ministry of Science and Innovation, and it is also funded by the European Regional Development Fund (ERDF). The CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) is made up of 46 research groups, selected for their renowned international scientific prestige, that mainly work within three scientific programmes: Bioengineering and Biomedical Imaging, Biomaterials and Tissue Engineering, and Nanomedicine. Its research work is oriented toward the development of prevention, diagnosis and monitoring systems as well as technologies for specific therapies such as Regenerative Medicine and Nanotherapies.

Further information

CIBER Communication Department

comunicacion@ciberisciii.es / 91 171 8119

Read More

NANBIOSIS research to fight cancer

Twenty years ago, the 4 February was declared World Cancer Day with the global challenge of cancer would not be forgotten. Since then, huge progress has been made to understand, prevent, diagnose, and treat cancer.

NANBIOSIS as an ICTS (Singular Scientific and Technical infrastructures) for biomedical research plays a very important role in the fight against cancer. Some examples of the work carried out during the last year, are bellow:

Unit 20 of NANBIOSIS  at VHIR, works in several proyects reletaed to cancer as  H2020-NoCanTher: magnetic nanoparticles against pancreatic cancer through the use of hyperthermia combined with conventional treatment. H2020-Target-4-Cancer: nanotherapy based on polymeric micelles directed against specific receptors of tumor stem cells in colorectal cancer. H2020-DiamStar: nanodiamonds directed against leukemia for the potentiation of chemotherapy. FET-OPEN EvoNano: in silico and tumor-tumor models for the prediction of PK / PD and tumor efficacy of antitumor nanomedicines against tumor stem cells.

The activities of U1 of Protein Production Platform (PPP) are also strongly committed with several projects devoted to develop new, more selective and more efficient antitumoral drugs, with antimetastatic effects.
oordinated action between units U1 of Protein Production Platform (PPP),
U18 of Nanotoxicology and U29 of Nucleic Acid Synthesis, shows promising results in development of nanopharmaceuticals with a high degree of efficacy for the treatment of metastases in colon cancer

Unit 6 of NANBIOSIS Biomaterial Processing and Nanostructuring Unit  is also working on a joined initiative between CIBER-BBN and CIBER-ONC to improve the current ex vivo immune cell expansion systems to help introduce immunotherapies such as the adoptive cell therapies, which have shown complete remissions of terminal cancer patients, to the clinics overcoming the limitation of having enough therapeutic cells with novel Nanobiomaterials. Researchers of Unit 6 and researchers of Laboratory of Translational Research in Child and Adolescent Cancer from the Vall d’Hebron Research Institute (VHIR), are working on a project financed by the Spanish Government and CIBER-BBN, for the development of a new nanomedicine for the treatment of high-risk neuroblastoma, one of the most frequent childhood cancers.

In our unit U26. NMR: Biomedical Applications II,  several studies for cancer biomarker discovery are being carried out. NMR studies on biofluids for the design of novel strategies for diagnosis support, easily transferable into the clinical practice, are being developed in biofluids in the context of cancer. Urine is one of the most easily obtainable biofluid and is a non-invasive source of biomarkers. Among these studies, we can mention the good discrimination achieved between urine from bladder cancer patients before surgery (cancer) and urine after surgery (free of cancer) and in the follow up of the disease, to monitor relapses

Some of the results of these researchs have been published in scientific magazines of high impact as for exemple;

Integrative Metabolomic and Transcriptomic Analysis for the Study of Bladder Cancer Alba Loras, Cristian Suárez-Cabrera, M. Carmen Martínez-Bisbal, Guillermo Quintás , Jesús M. Paramio, Ramón Martínez-Máñez,
Salvador Gil and José Luis Ruiz-Cerdá. Cancers 2019, 11, 686; doi:10.3390/cancers11050686

Nanostructured toxins for the selective destruction of drug-resistant human CXCR4+ colorectal cancer stem cells Naroa Serna, Patricia Álamo, Prashanthi Rameshef, Daria Vinokurovaef, LauraSánchez-García, Ugutz Unzueta, Alberto Gallardo, María  Virtudes Céspedes, Esther Vázquez, Antonio Villaverde, Ramón Mangues, Jan Paul Medema. . Journal of Controlled Release.  Volume 320, 96-104, 2020 https://doi.org/10.1016/j.jconrel.2020.01.019

Controlling self-assembling and tumor cell-targeting of protein-only nanoparticles through modular protein engineering Voltà-Durán, E., Cano-Garrido, O., Serna, N. et al. CSci. China Mater.63, 147–156 (2020). https://doi.org/10.1007/s40843-019-9582-9

Engineering Secretory Amyloids for Remote and Highly Selective Destruction of Metastatic Foci, María Virtudes Céspedes  Olivia Cano‐Garrido  Patricia Álamo  Rita Sala  Alberto Gallardo  Naroa Serna  Aïda Falgàs  Eric Voltà‐Durán  Isolda Casanova  Alejandro Sánchez‐Chardi  Hèctor López‐Laguna  Laura Sánchez‐García  Julieta M. Sánchez  Ugutz Unzueta  Esther Vázquez  Ramón Mangues  Antonio Villaverde . Advanced Materiasls Número de artículo: 1907348 , Dec. 2019 https://doi.org/10.1002/adma.201907348

Artificial Inclusion Bodies for Clinical Development Julieta M. Sánchez  Hèctor López‐Laguna  Patricia Álamo  Naroa Serna  Alejandro Sánchez‐Chardi  Verónica Nolan  Olivia Cano‐Garrido  Isolda Casanova  Ugutz Unzueta  Esther Vazquez  Ramon Mangues  Antonio Villaverde, Advanced Science. 2019 https://doi.org/10.1002/advs.201902420

Nanostructured Nucleolin-Binding Peptide for Intracellular Drug Delivery in Triple-Negative Breast Cancer Stem Cells Mireia Pesarrodona, Laura Sánchez-García, Joaquin Seras-Franzoso, Alejandro Sánchez-Chardi, Ricardo Baltá-Foix, Patricia Cámara-Sánchez, Petra Gener,  José Juan Jara, Daniel Pulido, Naroa Serna, Simó Schwartz Jr. Miriam Royo, Antonio Villaverde, Ibane Abasolo, Esther Vazquez ACS Applied Materials & Interfaces DOI: 10.1021/acsami.9b15803  

Nanostructure Empowers Active Tumor Targeting in Ligand‐Based Molecular Delivery López‐Laguna, H., Sala, R., Sánchez, J. M., Álamo, P., Unzueta, U., Sánchez‐Chardi, A., Serna, N., Sánchez‐García, L., Voltà‐Durán, E., Mangues, R., Villaverde, A., Vázquez, E., . Part. Part. Syst. Charact. 2019, 36, 1900304. https://doi.org/10.1002/ppsc.201900304

Read More

Release of targeted protein nanoparticles from functional bacterial amyloids: A death star-like approach

Sustained release of drug delivery systems (DDS) has the capacity to increase cancer treatment efficiency in terms of drug dosage reduction and subsequent decrease of deleterious side effects. In this regard, many biomaterials are being investigated but none offers morphometric and functional plasticity and versatility comparable to protein-based nanoparticles (pNPs). Researchers of NANBIOSIS units 1 and 18 are co-authors of an article  publish by Journal of Controlled Release in which it is described a new DDS by which pNPs are fabricated as bacterial inclusion bodies (IB), that can be easily isolated, subcutaneously injected and used as reservoirs for the sustained release of targeted pNPs. Our approach combines the high performance of pNP, regarding specific cell targeting and biodistribution with the IB supramolecular organization, stability and cost effectiveness. This renders a platform able to provide a sustained source of CXCR4-targeted pNPs that selectively accumulate in tumor cells in a CXCR4+ colorectal cancer xenograft model. In addition, the proposed system could be potentially adapted to any other protein construct offering a plethora of possible new therapeutic applications in nanomedicine.

In the study the researchers have generated novel smart biomaterials gathering most of the desirable features for implantable DDS, with cost effectiveness and simplicity in the biofabrication process. In this regard, single step fabricated IBs when injected subcutaneously rendered a long lasting release of targeted pNPs, able to enter to the blood stream and specifically target the tumor for as long as 10 days and they have described for the first time an approach for the fabrication of protein DDS based on protein deposition as IBs and their sustained release in form of fully functional targeted pNPs. This technology provides and stable source of targeted protein nanoparticles during long periods within the body with the action at distal points from the implantation site and pave the way for the appearance of new more efficient and less invasive treatments for a broad number of pathologies.

Protein production has been partially performed by the ICTS “NANBIOSIS”, more specifically by the U1. Protein Production Platform (PPP), whereas the in vivo biodistribution assays were performed in the NANBIOSIS U18. Nanotoxicology Unit,

For further information see https://sciencedirect.com/science/article/pii/S0168365918301780?via%3Dihub

Read More