+34 679 490 537info@nanbiosis.com

Posts Taged sars-cov-2

NANBIOSIS Expertise in the IQAC-CSIC Symposium dedicated to the fight against Covid-19 Pandemic

The 4th Annual IQAC Symposium will take place on September 23, 2020. This year will be dedicated to the research projects on COVID-19 that are being carried out in the IQAC-CSIC. It will be a dissemination day aiming to inform the general public about some of the lines of research that are currently being developed in the fight against the COVID-19 pandemic.

The event will be live streamed in Facebook: facebook.com/iqac.csic.es/

Three of the speakers, members of CIBER-BBN NANBIOSIS units at IQAC-CSIC, will explain their work. Pilar Marco and Roger Galve (NANBIOSIS U2 Custom Antibody Service (CAbS) will talk about “Wearable Devices for Detection rapid SARS-CoV-2” and Miriam Royo (NANBIOSIS U3 Synthesis of Peptides Unit shall inform about “Peptide-based chemical tools as diagnostic and therapeutic agents of COVID-19″

Further information and program: http://bit.ly/2ZLVT0o

The Institute for Advanced Chemistry of Catalonia (IQAC) is one of the research centers of the Spanish National Research Council (CSIC). The Institute is located in Barcelona and it was created in 2007 with the mission to perform research of excellence in Chemical Sciences with the broad goal of improving the quality of life. The research developed at IQAC is organized around two main nodes: Biological Chemistry and Nanobiotechnology, many of the investigations carried out by the Research Groups at IQAC lie at the intersection between nodes.

Since 2007 CIBER-BBN and IQAC-CSIC have created four Units of equipment and resources for research wich are part of NANBIOSIS and have been recognized by Spanish Goverment as ICTS (scientific and technical infrastructures, unique in its kind, that are dedicated to high quality research and technological development). The other two units Besides U2 an U3 are: U12 Nanostructured liquid characterization unit, led by Prof. Carlos Rodriguez Abreu and Unir29 Oligonucleotide Synthesis Platform (OSP), led by Prof. Ramón Eritja.

One on the projects in which NANBIOSIS units at CSIC are working in the fight against COVID-19 is CSIC POC4CoV project to develop diagnostic technologies for SARS-COV-2 in which participate 3 of our Units.

Read More

New project to alleviate the effects of Covid will be developed by JUMISC, partner of NANBIOSIS

The Jesús Usón Minimally Invasive Surgery Center (JUMISC), partner of NANBIOSIS, will develop an R&D project aimed at alleviating the effects of the health and social crisis of COVID-19, thanks to a collaboration agreement with Banco Santander.

The project “Analysis of ligands for SARS-CoV-2 in lymphocyte subpopulations with application for disease staging and patient stratification“, will be developed for a year with the collaboration of researchers from from the San Pedro de Alcántara Hospital in Cáceres, the University of Extremadura, the Reina Sofía Hospital and Mount Sinai in New York.

This research initiative aims to provide a reliable prediction of the development of the disease through the study of certain molecules related to the mechanisms of entry of the virus and how they are altered depending on the age and immune status of the individual. The result of the characterization of SARS-CoV-2 receptors and their correlation with the degree of differentiation of lymphocytes of patients could allow, by means of cytometric analysis, the stratification of patients.The project includes three phases: the first will define a panel of antibodies to identify, by cytometry, those subcellular populations with high levels of expression of ligands for the virus; in the second, the panel of markers already defined will be analyzed and the third will allow to establish groups of patients according to the stage of the disease and predict the evolution of those diagnosed.

For further information, click here

Read More

NANBIOSIS scientists in Aragón, explain on TV their research againts coronavirus

The special program on the coronavirus pandemic  by “En Ruta con la Ciencia” of Aragón Televisión, analyzes different aspects of the disease with special attention to the work of Aragonese scientists. Among them, two  research groups that coordinate NANBIOSIS units 9 and 27.

Starting at minute 44’45 ‘of the program, Doctor Jesús Lázaro, researcher of the BSICoS group of I3A-UZ and CIBER-BBN, led by Pablo Laguna, which coordinates NANBIOSIS U27 High Performance Computing Unit, explains his research. For almost 3 years, Jesús Lázaro had been working on a European project to develop a respiratory and heart rate monitoring system for patients with EPOC to control and predict episodes of worsening disease, but the current situation has led him to redirect his goal to try to provide solutions in this crisis and have creates an application for the mobile phone to detect from our home, if we have a viral infection: – “The parameters measured by this application have to do with the nervous system Autonomous, – explains Jesús Lázaro – they are the heart rate, its variability and the respiratory rate, these three parameters would allow observing a response through SARS-COV-2. The application works based on a technology that uses the flash of the mobile phone camera as a receiver to obtain a signal that is proportional to the blood volume of the finger put on the flash light, what allows detecting both, the number of beats per minute and the morphology of the arterial pulse, to obtain the respiratory rate. At the moment this application has been tested by the research staff and the next phase is to assess it with the general public. As the application is based on detecting autonomic markers, a very high sensitivity is expected, as well as a very low specificity, which would allow detecting not only SARS-COV-2 but analyzing these parameters in other contexts and in other diseases, even detecting other eventual viruses of other eventual pandemics ”.

Further information on the research project here

Starting at 28’14 ’’ One of the problems of the coronavirus test is what is known as false negatives, people who have passed the disease, but are not detected and could continue to spread it. A research group is developing early diagnostic tests to try to reduce this error rate. Pilar Martín Duque, at the IACS Aragonese Institute of Health Sciences, is a researcher of the NFP group of the INA and the CIBER-BBN, led by Jesús Santamaría, which coordinates NANBIOSIS U9 Synthesis of Nanoparticles Unit : – “All techniques have a detection limit and a sensitivity, it is necessary to have a minimum amount of virus in the body for the virus being detected, if the viral load is low it may not be detected at that time, it is possible that some patients with a low viral load recover, but in other cases the virus begins to grow and after two weeks they can be positives”- explains Pilar Martín. Her project makes PCRs more effective by concentrating the viral load before testing. – “There is a curious case, – continues Pilar -, of an American navy ship, moored in China, in which five sailors were detected to be infected by coronavirus, so they were quarantined during fourteen days and, after new tests with negative results, they were allowed to return to the United States on the ship. However halfway through the journey, the same five sailors suffered an outbreak of the disease. Therefore, our study would be useful for detecting patients with the virus tested for the first time or for not discharging patients who had been already diagnosed if they really are not yet negative”.  It is estimated that 10% of the population has infected 80%, these 10% are the so-called “superspreaders”, they are infected with a high viral load, but they feel well and do not know about it. For example, there have been several cases in choirs, such as the Choir of Zarzuela in Madrid, where 53 members were contagious out of the 80 members form the choir, this is because when singing or speaking very loudly, more drops are produced that carry the virus”. But why do some people become infected before others? Pilar explains that this is related to some, already known, receptors for entry of viruses, the AC2 receptors, and there are people who has more of these receptors than others.

Further information on the research here:

If we have learned anything from this pandemic it is the importance of health and research, a robust research system has the knowledge, tools, and human talent to respond to any situation. If we want to be prepared for the next pandemic, it is important and essential to continue betting on research.

Read More

The European Commission releases a video showing the European project against coronavirus led by prof Laura Lechuga

The European Commission Representation in Barcelona has published the five-minute video “The EU fights the Covid-19 from Catalonia” in which four researchers explain the projects they are working on.

The researchers appearing in the video are  Laura Lechuga Scientific Director of NANBIOSIS unit 4 from CIBER-BBN and ICN2-CSIC and Group Leader of CIBER-BBN at the ICN2 Nanobiosensors and Bioanalytical Applications Group), who works on a sensor to detect the coronavirus in a faster, easier and cheaper way than with current PCRs, Núria Montserrat (IBEC), who works on micro-kidneys made from stem cells to test a drug able to block the virus, Alfonso Valencia (BSC), who explains the huge computation power that the BSC can bring into play to find already existent drugs that may be suitable to treat Covid-19,  and Gabriel Anzaladi (Eurecat), who studies the presence of the virus in wastewater to estimate the people infected in a given zone or the probability of a new outbreak.

The European Commission is present in all Member States through a network of offices, called “representations”, which aim to report on the Commission’s activity and to bring the policies of the European Union closer to citizens. They are also in charge of capturing the social reality and the climate of opinion at street level and transferring this information to the European institutions in Brussels so that their policies better respond to the needs of citizens. In Catalonia and the Balearic Islands, this work is carried out by the “Representation of the European Commission in Barcelona”.

Read More

A recombinant SARS-CoV-2 vaccine

NANBIOSIS Protein Production Platform (PPP) Unit 1 (of CIBER-BBN and Autonomous University of Barcelona) is involved in a micro-patronage project for the development of a vaccine for COVID 19.

NANBIOSIS Unit 1 is directly involved in the initial part of the Virus Like Particles and Proteins expression and purification project of SARS-COV-2

Most vaccines used today are based on either attenuated forms of the original pathogen, or are inactivated vaccines, in which the pathogen has undergone physical or chemical treatments to eliminate its infectivity. The project proposes to use a new vaccine strategy based on recombinant proteins in imitation of viruses (virus-like particles or VLPs). The same strategy with which, for example, papillomavirus and hepatitis B virus vaccines have been created.

VLPs contain recombinant structural proteins, obtained by the introduction and expression of a gene in cultured cells, that form nanostructures similar to viral particles but do not contain their genetic information and, therefore, are not infectious. These particles are capable of arousing a strong immune response as they form a three-dimensional structure where the virus epitopes are exposed, but they are very safe.


First, we will design the genes that encode the structural proteins of the virus. At this point, the different sequences of the virus genome deposited in public databases must be analyzed and compared in detail. In this way, we can select the most representative sequence. On the other hand, we will carry out some control tests to detect the different fragments of the proteins where the response of the immune system is concentrated, the so-called antigens.
These studies will be carried out using bioinformatics tools by the Computational Biology Group of dr. Xavier Daura from the UAB Institute of Biotechnology and Biomedicine (IBB).

Production and purification
To carry out these productions, we need to use cultured cell lines in which we introduce the genes that encode the virus’s proteins and establish optimal obtaining conditions, without the need to use highly biological containment laboratories. Once produced, we will carry out a purification process and they can be validated.

This block will be carried out in parallel by the research group led by Dr. Francesc Godia from the Department of Chemical, Biological and Environmental Engineering, and Dr. Neus Ferrer from the Department of Genetics and Microbiology and member of the Nanobiotechnology Group led by Dr Antoni Villaverde, attached to the IBB and the CIBER-BBN. In addition, we will have the help of UAB research-scientific-technical services, such as the Microscopy Service (SM), and the Proteomics and Structural Biology Service (sePBioEs) and a unique scientific-technical infrastructure called NANBIOSIS.

Validation with patient serum and cell models
Once the proteins are purified, it is necessary to validate the vaccine formulations with patient serum. In other words, it must be demonstrated that the patient sera of the COVID-19 are linked to the vaccine proposals developed. This task will be coordinated by dr. Eduard José Cunilleras from the UAB Department of Animal Medicine and Surgery in collaboration with doctors from the Parc Taulí, Germans Trias, Vall d’Hebron and Santa Creu i Sant Pau hospitals, and the help of the scientific-technical service to support the research of the Crop, Antibody and Cytometry Service (SCAC) of the UAB.


Any product to be administered to humans must first go through a preclinical phase in animal models. All trials, when they reach this stage, must be approved by the Ethics Committee on Animal and Human Experimentation. The safety and efficacy of the vaccine are tested in these models.

During vaccination trials we will monitor the weight of the animals and their general condition. The presence of antibodies in the blood of vaccinated animals will be evaluated in cell cultures. The serum of the vaccinated animals will be incubated with the SAR-CoV-2 and we will proceed to the infection of cell cultures. If the antibodies are capable of reducing the infectivity of the virus, then we will move on to the final part of this stage, which will consist of infecting the vaccinated animals with the virus to see if they are protected from infection. A group of unvaccinated animals will also be infected and we will compare the results with another group of unvaccinated and uninfected animals. The vaccine should give similar results to the last group of animals.

Further information about the project and FAQs about donations: https://micromecenatge.uab.cat/vacunacoronavirus

Read More

Pilar Marco explains on TV her group’s research against Covid-19 pandemic

M.-Pilar Marco, Scientific Director of NANBIOSIS Unit 2 Custom Antibody Service (CAbS) has been interviewed on Spanish TV (RTVE) to talk about her research against the Covid-19 pandemic in the frame of the CSIC POC4CoV project, for the development of new and rapid diagnostic tools.

Nb4D group of CIBER-BBN and IQAC-CSIC, led by Prof. Marco is working on the development of tests to increase the efficiency and speed of diagnosis of the methods currently on the market.

According to Pilar Marco, the new strategy of the project differs basically in two fundamental aspects: on the one hand the technology, which is based on the current knowledge of some of the CSIC’s research groups in micro and nano techno technology and, on the other hand, in the selection strategy of the antigens that will produce a more specific and sensitive response to the or SARS-COV-2.

The time required to develop these tests is relatively short since researchers have the advantage of having detection technologies already developed and tested in other types of projects, but even so, these tests need between 6 and 8 months of development to obtain the first prototypes that, obviously, will have to be validated so that they can be made available in the market in a safely. Therefore the new tests will help us to be much better prepared before the new waves of the pandemic expected by the epidemiologists.

The interview can be watched in the following link (0:41:50)

Further information on POC4CoV project here

Read More

NANBIOSIS U27 researchers working in an App for the early diagnosis of covid-19 through mobile phones

Bsicos group researchers, from the I3A (Engineering Research Institute) of the University of Zaragoza and CIBER-BBN), Dr. Jesús Lázaro, Dr. Eduardo Gil, Dr. Raquel Bailón and Dr. Pablo Laguna, are working on a line of work for the search of solutions for the early diagnosis of Covid-19 cases, through the development of an App for mobile phones.

For almost three years, Dr. Jesús Lázaro, under the supervision of Professor Pablo Laguna, from the resarch group Bsicos, which coordinate Nanbiosis U27 High Performance Computing , have been working on the European project WECARMON (Wearable Cardiorespiratory Monitor) for the development of an ambulatory system that would allow monitoring the cardiac and respiratory rhythm of patients with Clinical Obstructive Pulmonary Disease (COPD) and thus control and predict episodes of worsening of the disease.

However, the current situation of pandemic due to the SARS-CoV-2 coronavirus has led the researchers, with the approval of the European Commission, to temporarily redirect their objective, foccusing their work in search of solutions for the early diagnosis of the covid-19.
The work carried out for patients with a respiratory disease such as COPD could now serve for the early detection of people with symptoms of covid-19, before even having fever, but also for asymptomatic people, since the rapid variation of these parameters is known. in the initial stages of other respiratory conditions. Our researchers will use these cardiac and respiratory parameters, indirect markers of the autonomic nervous system and, therefore, sensitive to the response of the immune system, potentially helping to identify possible cases of covid-19 earlier. A technological tool that could join the fight to control this pandemic.

Jesús Lázaro has recently made a two-year stay at Connecticut University in the United States, partner of the WECARMON project in which he was working with Pablo Laguna. Two other researchers from the Bsicos group, Dr. Raquel Bailón and Dr. Eduardo Gil, have also decided to redirect their lines of research and focus on the SARS-CoV-2 coronavirus. Re-directing research lines with different objectives to join the fight against the coronavirus is a great challenge and shows the relenvance of cutting-edge research to provide answers to the arising challenges in our society.
Jesús Lázaro explains that the application they are working on would allow a pre-selection of people at risk by analysing markers of the autonomic nervous system that would be measured on a mobile phone. ” At this moment, the above-mentioned four researchers have already developed the algorithms for other platforms and they are working now on an App using the technology of the cameras and the flashlight of the mobiles. A sudden change in heart rate variability or an increase in respiratory rate could give a sensitive and early warning, to resort to other more specific diagnostic tests for covid-19, decreasing the latency time, which has been sadly shown key in this pandemic. The developments and validation, those already made and those planned, are being carried out using NANBIOSIS U27 High Performance Computing (I3A-Unizar/ CIBER-BBN)

The WECARMON project is funded by the H2020 Research and Innovation Program of the European Commission. It is part of the Marie Sklodowska-Curie Individual Actions, whose objective is to promote the professional career of young and brilliant researchers, expanding their knowledge through training, stays abroad and internships, in order to help them develop all their potential as researchers.

Related news:

Read More

NANBIOSIS U2, U3 & U29 participate in the POC4CoV project to develop diagnostic technologies for SARS-COV-2

The Spanish Higher Council for Scientific Research (CSIC) will finance the project Point-of-care tests for the rapid detection of SARS-CoV-2 (POC4CoV), whose objective is to have effective diagnostic technologies for Covid-19. The Institute of Microelectronics of Barcelona (IMB-CNM-CSIC), the Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) and the Institute of Materials Science of Aragon (ICMA) participate in it.

The POC4CoV project aims to develop Point-of-Care (POC) devices for the in vitro diagnosis of SARS-COV-2 infection quickly and reliably, thanks to the use of multiplexed systems and the use of particular biomolecular probes. To do this, POC technological platforms will be used in combination with specific capture biomolecules and nanobiotechnological probes (enzyme bioconjugates and biofunctional plasmonic and magnetic nanoparticles), which will allow the simultaneous detection of different biomarkers (viral RNA and antigens, IgM and IgG) related to Covid-19 disease. The biomolecular complexes will be collected at specific points on the devices where the electrochemical or optical signals will be recorded.

The developed POC platforms will undergo analytical and clinical validation in a clinical setting.

Three units of NANBIOSIS (form CIBER-BBN and IQAC-CSIC) will will take an active participation in the project.

NANBIOSIS Unit 2 Custom Antibody Service (CAbS), will produce antibodies against the Spike protein and other virus proteins, trying to maximize the recognition of those epitopes that differentiate SARS-CoV-2 from other Coronaviruses

NANBIOSIS Unit 3 Synthesis of Peptides Unit will synthesize peptidic sequences that will allow to identify towards which epitopes the immune response is directed, which will allow to develop more specific diagnostic methods.

NANBIOSIS Unit 29 Oligonucleotide Synthesis Platform (OSP) has designed probes with oligonucleotide sequences that will allow the capture of viral RNA through the formation of high affinity triplex complexes

Read More