+34 679 490 537info@nanbiosis.com

Posts Taged cxcr4

NANBIOSIS U1 PPP will take a critical role in one of the projects selected by La Marató TV3 to fight against cancer

Selectively humanized nanomedicines aimed at killing CXCR4 + tumor cells for the treatment of acute myeloid leukemia”  is one of the Project awarded by La Marató TV3 Foundation and is participated by Dr. Antonio Villaverde, Estrategic of NANBIOSIS U1 Protein Production Platform (PPP)

The main objective of the project is the design and validation of humanized protein nanoparticles for the targeted delivery of antitumoral drugs for the treatment of acute myeloid leukemia. This will be done by the generation of protein-based nanoconjugates that will be targeted to the cytokine receptor CXCR4, overexpressed in this human neoplasia. The drugs will consist in a protein part, that will ofer nanoscale size, stability and CXCR4-targeting, and a small molecular weight chemical that will perform the cytotoxic effect over tumoral cells. The Protein Production Platform (U1 of NANBIOSIS), will have a critical role in the design and production of the protein amounts required for the in vivo experiments, that will be performed at the Institut de Recerca of Sant Pau Hospital.

In the 2018 La Marató TV3 edition, dedicated to cancer, 192 projects were presented, which were evaluated by 149 international scientists specialized in this field based on their quality, methodology and relevance. The management of the evaluation was carried out by the Health and Quality Assessment Agency of Catalonia, from the Department of Health. In accordance with the proposal of the Scientific Advisory Commission of the La Marató de TV3 Foundation, the Board agreed to distribute 13,149,870.76€ among the 43 scientific research projects.

The Project “Selectively humanized nanomedicines aimed at killing CXCR4 + tumor cells for the treatment of acute myeloid leukemia“. Will be developed by the research groups led by:

  • Dr. Jordi Sierra GilHospital de la Santa Creu i Sant Pau – IRHSCSP Institut de Recerca Hospital de la Santa Creu i Sant Pau
  • Dr. Antonio Villaverde CorralesFacultat de Medicina – UAB Universitat Autònoma de Barcelona
  • Dra. Lourdes Farré Vallvé Institut Català d’Oncologia – IDIBELL Institut d’Investigació Biomèdica de Bellvitge

Financing: 399.178,75 €

Read More

Selective CXCR4+ Cancer Cell Targeting and Potent Antineoplastic Effect by a Nanostructured Version of Recombinant Ricin

Researchers of NANBIOSIS Unit 1 and NANBIOSIS Unit 18, led by Prof Antoni Villaverde have published the article “Selective CXCR4+ Cancer Cell Targeting and Potent Antineoplastic Effect by a Nanostructured Version of Recombinant Ricin” at SMALL journal.

Under the unmet need of efficient tumor‐targeting drugs for oncology, a recombinant version of the plant toxin ricin (the modular protein T22‐mRTA‐H6) is engineered to self‐assemble as protein‐only, CXCR4‐targeted nanoparticles. The soluble version of the construct self‐organizes as regular 11 nm planar entities that are highly cytotoxic in cultured CXCR4+ cancer cells upon short time exposure, with a determined IC50 in the nanomolar order of magnitude. The chemical inhibition of CXCR4 binding sites in exposed cells results in a dramatic reduction of the cytotoxic potency, proving the receptor‐dependent mechanism of cytotoxicity. The insoluble version of T22‐mRTA‐H6 is, contrarily, moderately active, indicating that free, nanostructured protein is the optimal drug form. In animal models of acute myeloid leukemia, T22‐mRTA‐H6 nanoparticles show an impressive and highly selective therapeutic effect, dramatically reducing the leukemia cells affectation of clinically relevant organs. Functionalized T22‐mRTA‐H6 nanoparticles are then promising prototypes of chemically homogeneous, highly potent antitumor nanostructured toxins for precise oncotherapies based on self‐mediated intracellular drug delivery.

See article: https://doi.org/10.1002/smll.201800665

Read More

Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides

Scientists of Units 1 and 18 of NANBIOSIS are coathors of the article  “Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides” published by Nanomedicine: Nanotechnology, Biology and Medicine

Arginine-rich protein motifs have been described as potent cell-penetrating peptides (CPPs) but also as rather specific ligands of the cell surface chemokine receptor CXCR4, involved in the infection by the human immunodeficiency virus (HIV).

Polyarginines are commonly used to functionalize nanoscale vehicles for gene therapy and drug delivery, aimed to enhance cell penetrability of the therapeutic cargo. However, under which conditions these peptides do act as either unspecific or specific ligands is unknown. The authors have here explored the cell penetrability of differently charged polyarginines in two alternative presentations, namely as unassembled fusion proteins or assembled in multimeric protein nanoparticles. By this, they have observed that arginine-rich peptides switch between receptor-mediated and receptor-independent mechanisms of cell penetration. The relative weight of these activities is determined by the electrostatic charge of the construct and the oligomerizationstatus of the nanoscale material, both regulatable by conventional protein engineering approaches

Protein production has been partially performed by the ICTS “NANBIOSIS”, more specifically by the U1. Protein Production Platform (PPP), whereas the in vivo biodistribution assays were performed in the NANBIOSIS U18. Nanotoxicology Unit,

Article of reference:

Marianna Teixeira de Pinho FavaroNaroa SernaLaura Sánchez-GarcíaRafael Cubarsi, Mónica Roldán, Alejandro Sánchez-Chardi, Ugutz Unzueta, Ramón ManguesNeus Ferrer-MirallesAdriano Rodrigues Azzoni, Esther Vázquez, Antonio VillaverdeSwitching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides Nanomedicine: Nanotechnology, Biology and Medicine Volume 14, Issue 6, August 2018, Pages 1777-1786 

 

 

Read More