+34 620 10 75 37info@nanbiosis.com

Posts Taged regeneration-of-bone-tissue

Infrared sensitive hydrogels to control the regeneration of bone tissue.

NANBIOSIS U9 Synthesis of Nanoparticles Unit has participated in a research carried out bu researchers of CIBER-BBN group FIOBI-HULP at Hospital de la Paz, led by Nuria Vilaboa. reclently published in the scientific journal Biomaterials The researchers have used transgenic cells, which are incorporated into the scaffolding, to regulate the physiological production of bone growth factors and induce the osteoinduction process.

Achievement of spatiotemporal control of growth factors production remains a main goal in tissue engineering. In the present work, we combined inducible transgene expression and near infrared (NIR)-responsive hydrogels technologies to develop a therapeutic platform for bone regeneration. A heat-activated and dimerizer-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2). Genetically engineered cells were entrapped in hydrogels based on fibrin and plasmonic gold nanoparticles that transduced incident energy of an NIR laser into heat. In the presence of dimerizer, photoinduced mild hyperthermia induced the release of bioactive BMP-2 from NIR-responsive cell constructs. A critical size bone defect, created in calvaria of immunocompetent mice, was filled with NIR-responsive hydrogels entrapping cells that expressed BMP-2 under the control of the heat-activated and dimerizer-dependent gene circuit. In animals that were treated with dimerizer, NIR irradiation of implants induced BMP-2 production in the bone lesion. Induction of NIR-responsive cell constructs conditionally expressing BMP-2 in bone defects resulted in the formation of new mineralized tissue, thus indicating the therapeutic potential of the technological platform.

Thanks to the participation of NANBIOSIS U9 Synthesis of Nanoparticles Unit it has been possible to explore the use of gold plasmonic nanoparticles, capable of absorbing light in the near-infrared (NIR) area and converting it into heat

Article of reference:

Sánchez-Casanova, S., Martin-Saavedra, F.M., Escudero-Duch, C., Falguera Uceda, M.I., Prieto, M., Arruebo, M., Acebo, P., Fabiilli, M.L., Franceschi, R.T., Vilaboa, N. Local delivery of bone morphogenetic protein-2 from near infrared-responsive hydrogels for bone tissue regeneration. Biomaterials 241:119909. https://doi.org/10.1016/j.biomaterials.2020.119909

Read More

Biomedical materials that repel bacteria

The magazine Viceversa dedicates a special article to María Luisa González, Professor of Applied Physics at the University of Extremadura and Scientific Director of Unit 16 of NANBIOSIS: Surface Characterization and Calorimetry Unit.

One of her latest projects, PHYTECH, has developed a new surface for bone implants containing phytate, a natural product found in plant seeds that favours the regeneration of bone tissue and reduces the risk of infections in implants. Now, her research group is about to start a new European project with implant manufacturers in Austria and Lithuania, whose goal is to obtain a crystalline coating for titanium prostheses that favours cell adhesion and prevents or reduces bacterial infections.

The research trajectory of Professor González has a clear vocation towards the transfer of results to society. Her driving force in research is to improve the well-being of patients, improve the quality of materials to reduce infection problems after prosthetic and implant surgery, and also help to reduce the cost of healthcare.

Her challenge for the next five years is to know better the electrical characteristics of surfaces and how its roughness affect, at nanometer level, to prevent bacteria from adhering to them, without harming human cells.

Biomedical materials that repel bacteria
Read More