+34 679 490 537info@nanbiosis.com

Posts on Jan 1970

Pablo Laguna talking about Physiologically driven biomedical signal processing at the Autonomous University of San Luis Potosí

Zaragoza, October 14th, 2021 Bsicos.i3a.es

Pablo Laguna, Scientific Director of NANBIOSIS U27 High Performance Computing and researcher of BSICoS Group of I3A-UNIZAR and CIBER-BBN gave a talk about Physiologically driven biomedical signal processing at the Faculty of Physics at the Autonomous University of San Luis Potosí (UASLP) in Mexico. He explaned how biomedical signals convey information about biological systems and can emanate from sources of as varied origins as electrical, mechanical or chemical.

In particular, biomedical signals can provide relevant information on the function of the human body. This information, however, may not be apparent in the signal due to measurement noise, presence of signals coming from other interacting subsystems, or simply because it is not visible to the human eye. Signal processing is usually required to extract the relevant information from biomedical signals and convert it into meaningful data that physicians can interpret. In this respect, knowledge of the physiology behind the biomedical measurements under analysis is fundamental. Not considering the underlying physiology may lead, in the best case, to processing methods that do not fully exploit the biomedical signals being analyzed and thus extract only partially their meaningful information and, in the worst case, to processing methods that distort or even remove the information of interest in those signals.

Biomedical Signal Processing (BSP) tools are typically applied on just one particular signal recorded at a unique level of the functional system under investigation and with limited knowledge of the interrelationships with other components of that system. In most instances though, BSP can benefit from an analysis in which more than one signal is evaluated at a time (multi-modal processing), different levels of function are considered (multi-scale processing) and scientific input from different disciplines is incorporated (multi-disciplinary processing). For each problem at hand, the BSP researcher should decide up to which extent information from a number of signals, functional levels or disciplines needs to be incorporated to solve the problem.

As an example, a multi-scale model may be necessary in cases where, for instance, a deeper knowledge of the cell and tissue mechanisms underpinning alterations in a body surface signal is required, whereas a simplified single-scale model may be sufficient in other cases, as when investigating the relationship between two signals measured on the whole human body. At present, there are many biomedical signals that can be acquired and processed using relatively low-cost systems, which makes their use in the clinics very extensive. In particular, non-invasive signals readily accessible to physicians are increasingly being used to improve the diagnosis, treatment and monitoring of a variety of diseases. The presentation aims to illustrate the role played by BSP in the analysis of cardiovascular signals. A set of applications will be presented where BSP contributes to improve our knowledge on atrial and ventricular arrhythmias, the modulation of cardiac activity by the autonomic nervous system (ANS) and the interactions between cardiac and respiratory signals.

Read More

Results of the POSITION-II Project “A pilot line for the next generation of smart catheters and implants”

Cáceres, October 14th, 2021

POSITION II has received funding within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union’s H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement Ecsel-783132-Position-II-2017-IA.

It promotes innovation in smart medical instruments and focuses in the next generation of smart catheters and implants by the introduction of open technology platforms for: miniaturization, in-tip AD conversion, wireless communication, MEMS transducer technology and encapsulation. These platforms are open to multiple users and for multiple applications.

POSITION II will enable the further development of the European R&D and manufacturing capability, not only encompassing the micro-fabricated device itself, but also the various value chains that they enable. Finally, by bringing smart catheters into the domain of high volume manufacturing, POSITION II will improve the quality of health-care at manageable cost.

The project, led by Philips Electronics Netherlands B.V, has been developed by 45 partners located in 12 different countries and has finished in September 2021. Within this large collaborative project, the NANBIOSIS units at CCMIJU have been involved in the validation of a novel catheter to administer encapsulated cell therapy to the heart. Also NANBIOSIS U10 Drug Formulation unit of CIBER-BBN and UPV/EHU , has participated being responsible for carrying out the formulation of the cells in hydrogels, for administration through the catheter at the cardiac level, for the regeneration of heart tissue.

The results of the project are available on a video-format documentary that contains short interviews to the consortium partners on their participation. Specifically, CCMIJU has presented its work and results through a short interview to Dr. Verónica Crisóstomo, Coordinator of Cardiovascular Unit. The documentary can be found at https://vimeo.com/604674309/bd8b94050c

Further info about the project here: http://position-2.eu/

Read More

Piezoelectric-assisted micromanipulator for assisted reproduction research

Cáceres, 6/10/2021

Today the provider of a Piezoelectric-assisted micromanipulator installs this device in the CCMIJU’s Assisted Reproduction Lab and provides of specific training for its use.

The acquisition of the micromanipulator is part of the project “Embryonic Genetics in Assisted Reproduction” (GENERA), co-funded by the European Regional Development Fund (ERDF) within the framework of Spain’s Plurirregional Operational Program for Singular Scientific and Technical Infrastructures (ICTS) 2014 -2020 and by Consejería de Economía, Ciencia y Agenda Cultural of  Junta de Extremadura.

The objective of GENERA includes the purchase of three devices to expand services in the field of embryonic genetics as well as creating, editing and making traceability of embryos with high genetic value.

The first equipment acquired is the EPPENDORF PiezoXpert Piezoelectric-assisted micromanipulator that supports the creation and possible embryo editing, allowing easy penetration into cells for subsequent microinjection or micromanipulation.

This acquisition will be completed with two other devices that will offer the possibility of developing next-generation embryos, being able to face specific studies of the highest reproductive level and offering studies demanded by companies in the sector.

The project has an eligible budget of €98,000, of which the ERDF co-financing rate (80%) amounts to 78,400 and the national contribution to €21,600. It is expected to be completed in December 2022.

Read More

Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction

Researchers of NANBIOSIS units U14 Cell Therapy unit, U21 Experimental operating rooms and U24Medical Imaging at JUMISC are coauthors of an article recently published by the journal Cells “Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction“·

Large animal studies have been carried out by the ICTS ‘NANBIOSIS’, specifically Units 14, 21, 22, and 24 of the JUMISC

Human cardiac progenitor cells (hCPC) are considered a good candidate in cell therapy for ischemic heart disease, demonstrating capacity to improve functional recovery after myocardial infarction (MI), both in small and large preclinical animal models. However, improvements are required in terms of cell engraftment and efficacy. Based on previously published reports, insulin-growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) have demonstrated substantial cardioprotective, repair and regeneration activities, so they are good candidates to be evaluated in large animal model of MI. We have validated porcine cardiac progenitor cells (pCPC) and lentiviral vectors to overexpress IGF-1 (co-expressing eGFP) and HGF (co-expressing mCherry). pCPC were transduced and IGF1-eGFPpos and HGF-mCherrypos populations were purified by cell sorting and further expanded. Overexpression of IGF-1 has a limited impact on pCPC expression profile, whereas results indicated that pCPC-HGF-mCherry cultures could be counter selecting high expresser cells. In addition, pCPC-IGF1-eGFP showed a higher cardiogenic response, evaluated in co-cultures with decellularized extracellular matrix, compared with native pCPC or pCPC-HGF-mCherry. In vivo intracoronary co-administration of pCPC-IGF1-eGFP and pCPC-HFG-mCherry (1:1; 40 × 106/animal), one week after the induction of an MI model in swine, revealed no significant improvement in cardiac function.

Article: Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction Cells 202110(10), 2571

Read More