+34 620 10 75 37info@nanbiosis.com

Posts Taged pseudomonas-aeruginosa

New results evidence new biomarkers for early diagnosis of P. aeruginosa infections

Pseudomonas aeruginosa is a common multidrug-resistant pathogen that causes acute and chronic infections. However, P. aeruginosa, as many other bacterial species, has developed resistance to antibiotics being difficult to treat. For this reason diagnostic methods allowing detection at early  stages of the infection are required  and, therefore, efficient biomarkers of infection are very helpful. These fast diagnosis will help on the subsequent therapeutic treatment.

The Nb4D group of CIBER-BBN and IQAC-CSIC (led by M.-Pilar Marco) has recently conducted a research to develop a highly sensitive, specific and reliable immunochemical assay to detect pyocyanin (PYO), one of the most important virulence factors of Pseudomonas aeruginosa.

The assay uses a high-affinity monoclonal antibody produced by the unit 2 of the ICTS NANBIOSIS Custom Antibody Service (CAbS) (Dr. Núria Pascual).

The microplate-based ELISA developed is able to achieve a limit of detection (LoD) of 0.07 nM, which is much lower than the concentrations reported to be found in clinical samples (130 µM in sputa and 2.8 µM in ear secretions). The ELISA has allowed the investigation of the release kinetics of PYO and 1-OHphz (the main metabolite of PYO) of clinical isolates from P. aeruginosa-infected patients. Significant differences have been found between clinical isolates obtained from patients suffering an acute or a chronic infection (~6,000 nM vs. ~8 nM of PYO content, respectively).

The results found point to a real potential of PYO as a biomarker of P. aeruginosa infection and the possibility to use such virulence factor also as a biomarker for patient stratification and for an effective management of these kinds of infections.

Article of referece:

Rodriguez-Urretavizcaya, B., Pascual, N., Pastells, C., Martin-Gomez, M.-T., Vilaplana, Ll.*, Marco. M.-P. (2021). “Diagnosis and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin From Clinical Bacterial Isolates.” Frontiers in Cellular and Infection Microbiology 11(1215). https://doi.org/10.1016/j.jmbbm.2021.104793

Read More

NANBIOSIS U12 researchers modify contact lenses to reduce the risk of bacterial infection

Researchers from NANBIOSIS U12 Nanostructured liquid characterization unit, from CIBER-BBN at the IQAC-CSIC have chemically modified contact lenses, incorporating antibacterial properties. Contact lenses, especially soft ones, pose a risk of ocular microbial infection that can eventually lead to loss of vision.

“These new contact lenses inhibit the formation of bacterial biofilms and could prevent ocular keratitis” explains Jordi Esquena, a researcher at the CIBER-BBN at the IQAC-CSIC and one of the coordinators of the work.

In the study, published in Colloids and Surfaces B: Biointerfaces, bactericidal activity was introduced into hydrogel contact lenses, through antimicrobial peptides that were anchored on the lens surface. The publication describes the obtaining, efficacy and biocompatibility of these contact lenses.

“We have been able to show that peptide functionalized contact lenses can dramatically reduce bacterial adhesion and viability when exposed to Pseudomonas aeruginosa and Staphylococcus aureus,” explains Dr. Esquena.

The authors conclude that these systems offer the potential to minimize corneal bacterial infection and represent a suitable platform for future ophthalmic devices.

The characterization of functionalized contact lenses and the studies by fluorescence optical microscopy were carried out mainly in the Nanostructured Liquids Characterization Unit (U12) of the ICTS NANBIOSIS.

Article of reference:

Emiliano Salvagni, Clara García, Àngels Manresa, Claudia Müller-Sánchez, Manuel Reina, Carlos Rodríguez-Abreu, Maria José García-Celma, Jordi Esquena. Short and ultrashort antimicrobial peptides anchored onto soft commercial contact lenses inhibit bacterial adhesión.https://doi.org/10.1016/j.colsurfb.2020.111283

Read More