+34 620 10 75 37info@nanbiosis.com

Posts on Jan 1970

U9-S03. Characterization of nanoparticles

Characterization of nanoparticles

The unit has access to different advanced characterization equipment including N2 adsorption (ASAP), porosimetry, several chromatography techniques (GC, HPLC, UPLC, GC-MS), Microwave Plasma-Atomic Emission Spectroscopy (MP-AES) for elemental analysis, UV-VIS spectroscopy, DSC, NTA, TPD/TPR and TGA. On the other hand, there is access to magnetic characterization by SQUID and VSM, Raman Spectroscopy (Alpha300R WITEC Raman confocal microscope), Infrared spectroscopy FTIR (Vertex 70 Bruker) and Fluorescence spectrometry (Perkin-Elmer, LS-45). Scanning Electron Microscopes (SEM) (including 3 dual-beam models); Transmission Electron Microscopes (TEM) (including two ultra-high resolution models with aberration corrector lens: TITAN 80-300 y TITAN CUBE 60-300). X-ray Diffractometers (specialized for powdered, low-angle and heating configurations), 2 X-ray Photoemission Spectrophotometers (XPS).

Customer benefits

The customer will be benefit from the expertise of the Unit´s members to carry out a complete characterization of nano and microstructured materials, ranging from polymeric, biological to inorganic compositions, including morphological, chemical, structural, optical, magnetic properties.

Target customer

Companies, material suppliers, pharma laboratories, research laboratories, conservation, medical laboratories.

Additional information

Selected Reference:

N. Miguel-Sancho, G. Martinez, V. Sebastian, A. Malumbres, I. Florea, R. Arenal, M. Carmen Ortega-Liebana, J.L. Hueso, J. Santamaria, Pumping Metallic Nanoparticles with Spatial Precision within Magnetic Mesoporous Platforms: 3D Characterization and Catalytic Application, Acs Applied Materials & Interfaces, 9 (2017) 41529-41536.

Read More

U9-S02. Synthesis of NPs by wet methods and microfluidic technology

Synthesis of NPs by wet methods and microfluidic technology

This facility is able to draw on a wide range of nanoparticles fabrication techniques by wet chemical approaches including the use of co-precipitation techniques, light-assisted co-deposition methods, hydrothermal, solvothermal synthesis. It also entails the use of alternative microfluidic reactors to achieve a higher control and reproducibility of targeted nanoparticles.

Customer benefits

The customers will benefit from the expertise of researchers to synthesize a wide variety of nanomaterials and nanocomposites including polymeric, magnetic, plasmonic, core-shell, nanorods, nanostars, nanoalloys of noble metal, transition metal and inorganic oxides. Microfluidic technology can be also designed to optimize specific demands of continuous production or in situ encapsulation of cargoes of interest.

Target customer

Companies, nanoparticle suppliers and research groups can benefit from custom-designed delivery of an ample portfolio of nanoparticle designs that can be applied in biomedicine, sensing, toxicology, delivery, decontamination and energy applications.

Additional information

Selected References:

  1. M.C. Ortega-Liebana, J.L. Hueso, R. Arenal, J. Santamaria, Titania-coated gold nanorods with expanded photocatalytic response. Enzyme-like glucose oxidation under near-infrared-illumination, Nanoscale, 9 (2017) 1787-1792.
  2. B. Rubio-Ruiz, A.M. Perez-Lopez, L. Uson, M.C. Ortega-Liebana, T. Valero, M. Arruebo, J.L. Hueso, V. Sebastian, J. Santamaria, A. Unciti-Broceta, In Cellulo Bioorthogonal Catalysis by Encapsulated AuPd Nanoalloys: Overcoming Intracellular Deactivation, Nano Letters, 23 (2023) 804-811.

Related Research Projects:

CADENCE – Catalytic Dual-Function Devices Against Cancer
09/2017 – 08/2022. Funding Entity: European Union H2020 – Advanced Grant. PI: Jesus Santamaria

https://www.nanbiosis.es/wp-content/uploads/2015/05/U9.-Synthesis-of-Nanoparticles-Samples.jpg

Read More

U9-S01. Synthesis of NPs by laser induced-pyrolysis

Synthesis of NPs by laser induced-pyrolysis

The unit provides an automated system for the synthesis of nanoparticles using laser-induced pyrolysis of chemical precursors in gas and/or aerosol phase, which enables the generation of different type of nanoparticles. This service includes the possibility of selecting different feeding precursors either in gas, liquid or resuspended solids. The unit can also explore solid or liquid recollection of nanoparticles.

Customer benefits

This service can be quite convenient for generation of large quantities of magnetic or carbonaceous materials. It can be also ideal for custom-designed configurations of hybrid composites containing first and second transition metal oxides.

Target customer

This service is designed to supply nanoparticles for biomedical applications, including diagnosis and sensing. Research groups interested in generating large quantities for in vivo experiments, nanotoxicology or energy related applications are ideal customers.

Additional information

Selected References:

  1. A. Madrid, G. Martinez, F. Hornos, J. Bonet-Aleta, E. Calvo, A. Lozano, J.L. Hueso, Laser-induced tuning of carbon nanosensitizers to maximize nitrogen doping and reactive oxygen species production in the visible range, Catalysis Today, 422 (2023).
  2. G. Martinez, A. Malumbres, A. Lopez, R. Mallada, J.L. Hueso, J. Santamaria, Laser-Assisted Production of Carbon-Encapsulated Pt-Co Alloy Nanoparticles for Preferential Oxidation of Carbon Monoxide, Frontiers in Chemistry, 6 (2018).
  3. G. Martinez, A. Malumbres, R. Mallada, J.L. Hueso, S. Irusta, O. Bomati-Miguel, J. Santamaria, Use of a polyol liquid collection medium to obtain ultrasmall magnetic nanoparticles by laser pyrolysis, Nanotechnology, 23 (2012).

Selected Research Projects:

  1. Laser Pyrolysis For The Development Of Inorganic Nanoparticles –10/2017 – 09/2018. Funding Entity: TEIJIN LIMITED. PI: Jesús Santamaría
  2. PID2020-114926RB-I00: Generación asistida por láser de catalizadores de átomos aislados. Aplicaciones en energía, medio ambiente y salud. 09/2021 – 08/2024. Funding Entity: AGENCIA ESTATAL DE INVESTIGACIÓN PI: Jesús Santamaría

U09_JF_4522

Read More

U3-E07. System for acidolactic cleavage (Boc/Bzl strategy), UNIQUE IN SPAIN

System for acidolactic cleavage of the peptide resin boundby anhydrous HF (Boc/Bzl strategy).

Read More

U3-E06. Lyophilizers and SpeedVac evaporators

Lyophilizers and SpeedVac evaporators.

Read More

U3-E05. Bohdan miniblocks

Bohdan miniblocks to generate libraries of medium- sized peptides.

Read More

U3-E04. High-performance liquid chromatography (HPLC -MS) system with a diode array detector and coupled to a mass spectrometer

Analytical high-performance liquid chromatography (HPLC -MS ) system with a diode array detector and coupled to a mass spectrometer.

Read More

U3-E03. High-performance liquid chromatography (HPLC) system with dual-wavelength UV detector

Analytical and prepartive high-performance liquid chromatography (HPLC ) system with dual-wavelength UV detector.

Read More

U3-E02. High-performance liquid chromatography (HPLC) systems with a diode array detector.

Analytical and prepartive high-performance liquid chromatography (HPLC ) system with a diode array detector.

Read More

U3-E01. Automatic synthesizer

Automatic synthesizer which can be operated at a range of scales (0.1-0.5 mmol) and with different types of chemistry (Fmoc and Boc) and coupling agents.

Read More