+34 620 10 75 37info@nanbiosis.com

Posts on Jan 1970

NANBIOSIS U1 PPP invited to PEGS, the Protein & Antibody Engineering Summit

*Image explained by Merce Márquez Martínez, Coordinator of NANBIOSIS U1

The NBT group and Unit 1 of NANBIOSIS (Protein Production Platform, PPP), from CIBER-BBN and IBB-UAB, participated in the 15th PEGS Europe conference held in Lisbon from November 14th to 16th. PEGS, or the Protein & Antibody Engineering Summit, is a prestigious conference, organized by the Cambridge Healthtech Institute (CHI), focusing on protein engineering and its applications in drug discovery, development, and delivery. This conference serves as a valuable platform for knowledge exchange among researchers, scientists, industry experts, and professionals in the field of protein science.

From left to right, Julieta María Sanchez, Merce Márquez, José Luis Corchero and Eloi Parlade

The conference typically includes workshops, seminars, keynote presentations, panel discussions, poster sessions, and exhibitions. These elements allow participants to delve into various aspects of protein engineering, covering topics such as novel technologies, therapeutic targets, biologics development, and innovative strategies for protein design and optimization. PEGS fosters networking, collaboration, and learning in the dynamic field of protein engineering.

The meeting featured parallel sessions covering various thematic areas like engineering, targets, bispecifics, immunotherapy, analytical methods, expression, machine learning, and training seminars. Notably, this year’s focus was on the application of antibodies as treatment platforms, particularly in oncology. Artificial intelligence topic, however, had a significant presence at the conference as a tool for the prediction of protein structures, understanding their functions, and accelerating drug discovery processes. Algorithms were discussed for analyzing extensive biological data to model protein behavior, predict protein folding patterns, identify potential drug targets, and design novel proteins with specific functions. Additionally, tools aiding in protein engineering, optimizing production methods, and facilitating the development of personalized medicine by analyzing individual variations in protein interactions were highlighted.

The NBT group, and PPP from NANBIOSIS, was the only Spanish research group invited to have an active participation in the meeting. Specifically, the group contributed invited oral presentations in the tracks of “cell line and systems engineering”, “Optimizing expression platforms” and “Protein process development”. These oral presentations, along with a poster, focused on presenting the latest results of the group in the field of microparticles as protein-only based platforms for drug delivery and optimizing the production of recombinant proteins in mammalian cells.

In addition, the Technical Coordinator of the NANBIOSIS’s Unit 1 (PPP) was invited as a chairperson to moderate and lead the session titled: “Overcoming expression and production challenges for unique proteins”.

In this setting, connections were established with researchers who share an interest in our work, and there is an anticipation of forging new collaborations.

The upcoming PEGS conference scheduled for 2024 will be held in Barcelona, and the group looks forward to showcasing their latest findings once more.

*Image: Representation by AI of Artificial Microparticles: Robot generating microparticles with embedded DNA fragments.  These particles on micro scale are mainly composed by proteins that self-assemble into these larger structures when cations are added. These particles are able to slowly disintegrate into the constitutive proteins, functioning as an effective platform for drug delivery in several medical applications. Specifically designed as carriers, they provide a sustained and continuous release of protein-based drugs over several days, ensuring controlled and gradual administration for therapeutic purposes.

Read More

From the molecule to the bioassay by Custom antibody service (CAbS)-NANBIOSIS U2 as a PTI+Global Health Infraestructure

During 20-22 of November 2023, the III PTI+Global Health Scientific Conference were held in the Center for Human and Social Sciences, in Madrid.

In March 2020, the CSIC (Spanish National Research Council) launched the the Interdisciplinary Thematic Platform (PTI) on Global Health to bring together research teams and enhance knowledge about the new coronavirus SARS-CoV-2, which caused the pandemic. The PTI has mobilized and coordinates more than 400 scientists from 50 CSIC institutes in all areas.

The annual PTI+Global Health Scientific Conference are a meeting space where the results of the research carried out in the laboratories can be shown and discussed.

In the words of Margarita del Val, coordinator of the PTI+Global Health “In these III Conferences we are looking to the future to see how we evolve from the coronavirus to be prepared for future pandemics due to infectious diseases”. Iñaki Comas, coordinator of the PTI explained that this conference has been focused on “How to approach infectious diseases from a particular corner of knowledge but in an interdisciplinary way to be in a better position to face these global health challenges”.

The research caried out by the Nb4D groupNANBIOSIS U2 were presented by Julian Guercetti and Lluisa Villaplana:

“Towards a novel molecular signature for diagnosing infections based on Quorum sensing” M.-Pilar Marco; Juan Raya; Nuria Pascual; Nerea Castro; Carla Ferrero; J.-Pablo Salvador

“Immuno-μSARS2 chip: Correlating COVID-19 clinical severity with IgG personalized profiles” Julian Guercetti; Marc Alorda; Miriam Royo; Alicia Lacoma; Eduardo Padilla; Juan P. Horcajada; Silvia Castaneda; Agustín
Gutierrez-Galvez; Santiago Marco; J. Pablo Salvador; Pilar Marco, in this case with also with the participation of NANBIOSIS U3 Synthesis of Peptides Unit, led by Miriam Royo

“Using quorum sensing based antibodies as a new therapeutic strategy to treat Pseudomonas aeruginosa infections” Lluïsa Vilaplana Holgado; Bárbara Rodriguez Urretavizcaya; M.-Pilar Marco Colás

The Custom Antibody Service (CAbS) – NANBIOSIS U2 was presented by Julian Guercetti as one a PTI+Salud Global Infraestructure

“Custom antibody service (CAbS) from the molecule to the bioassay” Nuria Pascual Duran; Andrea Bastias; Idoia Camí; J.Pablo Salvador; Julian Guercetti; Lidia Hinojosa; Montserrat Rodriguez; Pilar Marco

Nanbiosis Unit 2 (Custom Antibody Service-CAbS) is a technological facility established in 2009 as part of the Spanish National Research Council (CSIC) and the Biomedical Research Center Network of Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN). Located within the Institute of Advanced Chemistry of Catalonia (CSIC) in Barcelona, the platform is equipped with a cell culture laboratory, housing the necessary equipment for obtaining, selecting, growing, and storing hybridomas. Additionally, the service offers laboratories for the synthesis of immunogens and the characterization of the produced antibodies.
The CAbS platform provides its monoclonal and polyclonal antibody production services to groups affiliated with CSIC and CIBER-BBN, as well as other research groups from public or private institutions and companies.
The primary goal of the service is to deliver high-quality service and scientific guidance in the production of immunoreagents, including polyclonal, monoclonal antibodies, and antibody fragments, as well as various probes such as protein and enzyme bioconjugates, biotinylated and fluorescent probes, biofunctionalized particles, and more.
The service is adaptable to each client’s needs and can produce antibodies against proteins, peptides, organic molecules, or other antigens through standardized or customized protocols. Special emphasis is placed on the immunogen design phase, a crucial aspect for modulating antibody selectivity and affinity.
One distinguishing feature of the CAbS service is its provision of guidance and assistance in preparing immunogens and producing antibodies for low-molecular-weight molecules, such as pigments, hormones, or anabolic agents. Service management is overseen by the NB4D group at IQAC-CSIC, a team with extensive experience in this field. Each service request is reviewed by a Scientific Committee, which produces a feasibility report before project acceptance. Users are kept informed of project progress at all stages and are consulted before proceeding based on the achieved results.
The services offered by the platform include:
• Preliminary discussion of project characteristics
• Design and synthesis of haptens
• Preparation of bioconjugates
• Hybridoma development
• Production of monoclonal antibodies
• Production of polyclonal antibodies
• Additional services (antibody purification, monoclonal antibody isotyping, etc.)
• Guidance and setup of immunoassays.

Recently, the unit has acquired a Surface Plasmon Resonance (SPR) instrument, which enables real-time detection and monitoring of interactions between two or more molecules without the need for labelling. The studies conducted with this instrument serve to determine specificity between compounds and/or characterize the kinetics and affinity of
these interactions. This SPR was funded by the European Commission – NextGenerationEU (Regulation EU 2020/2094), through CSIC’s Global Health Platform (PTI Salud Global).

Read More

The door is now open to a new nanoparticle-based treatment for chronic liver disease

– It is possible to achieve an administration method that improves the effectiveness and increases the safety of drugs for chronic liver disease?

-Yes, with nanoparticles!

– How?

To find an answer, was created the european project NANOSIM (Biodegradable nanoparticles of Simvastatin as new therapeutic tool for chronic liver disease financed in the Joint Transnational Call (2018) led by the Hospital Vall d´Hebron. A translational research proposed as an approach for its use in patients.

Until now, the only therapeutic option for patients is to eliminate the etiological agent (or the external promoter of damage), whether it is a virus, such as Hepatitis B, or a substance, such as alcohol. Once the agent is eliminated, only preventive treatment of the main associated complications can be carried out, but nothing to prevent or slow down the damage to the liver.

Now, the team behind NANOSIM project has published a study in the journal Pharmaceutics that opens the door to a treatment that specifically targets the sinusoidal endothelial cells of the liver, which are the first inducers of liver damage. The innovation is not a new drug, but a new delivery method that uses nanotechnology so that the drug acts directly on key liver cells.

The study has been led by María Martell, head of the Advanced Chronic Liver Diseases laboratory within the VHIR Liver Diseases group and with the collaboration of Ibane Abasolo, head of the VHIR Clinical Biochemistry, Drug Delivery and Therapy group. The researchers from both groups belong to the Network Biomedical Research Center (CIBER) in the area of Liver and Digestive Diseases (CIBEREHD) and Biomedicine, Biomaterial and Nanomedicine (CIBER-BBN), respectively. The U20 of the ICTS NANBIOSIS has also participated in the study.

Dr. Martell highlights the importance of advancing new and better treatments for cirrhosis: “Chronic liver diseases are the fifth cause of mortality in adults aged 50-70 years and cause 85% of liver transplants. Only in the territory European it is estimated that there are 29 million people affected”.

The research team focused on simvastatin, a drug used as an adjunctive therapy for cholesterol and which had been shown to have a protective function of endothelial cells, which are key to preventing the creation of liver fibrosis that causes liver inflammation. The problem is that oral or intravenous administration of the necessary dose causes a series of side effects, at the muscle and liver level, which limits its use. The goal of the research was to find a way to deliver the drug directly to the endothelial cells of the hepatic sinus without it being able to disperse to other parts of the body and causing unwanted side effects.

This active and specific targeting was achieved by binding polymeric micelles to peptides recognized by the surface marker CD32b, specific for liver endothelial cells. In this way, in in vivo models, a reduction in liver fibrosis was achieved without a significant increase in toxicity and, therefore, an effective and safe method to treat chronic liver diseases.

Dr. Abasolo, Director of NANBIOSIS U20 adds “Once that we have demonstrated the effectiveness of the technology to directly reach the sinus endothelial cells, a wide range of possible medications opens up with which we can use this nanotechnology to improve liver function.”

Article of reference:

Optimization of Statin-Loaded Delivery Nanoparticles for Treating Chronic Liver Diseases by Targeting Liver Sinusoidal Endothelial Cells

Read More

Rosa Hernández of the NanoBioCel group-NANBIOSIS U10 has received the Female Talent Award 2023 Women and Science

On Thursday, November 2, the Female Talent Award, in the category of Women and Science, was awarded to Rosa Hernández from the NanoBioCel group of CIBER BBN and the U10 Drug Formulation Unit. The award is given by AMPEA (Association of Professional and Business Women of Alava).

In her award speech, Rosa Hernández, highlighted that the effort and work carried out during all these years has allowed the research group to develop cutting-edge research and to place the names of the University of the Basque Country (UPV/EHU) and Vitoria-Gasteiz on the map of cutting-edge research in Nanotechnology and Regenerative Medicine.

She also stressed that: “awards like this allow society to get to know us, to know what we do in our laboratories and gives us a lot of visibility so that girls and young women begin to have female references in science and will be encouraged to choose, in the future, a scientific career”.

Read More

Impactful research with NANBIOSIS participation in the Poster Tour of CIBER-BBN & CIBEREHD Annual Conference.

2023 CIBER-BBN Annual meeting has taken place at Santemar Hotel, in Santander during November 6-7. This year the format of our annual conferences has been changed towards a collective event scheme between the CIBER-BBN and CIBEREHD thematic areas.

  • On Monday 6 the scientific sessions werecommon for EHD and BBN, with appealing contents for the mixed audience.
  • On Tuesday 7 EHD and BBN sessions will specific for each area in separate rooms (with common coffee break).

Posters of both areas were on display in the exhibit hall throughout the entirety of the Annual Meeting.

Moreover, at the “Posters & beers” session (Monday 6th: 6:00 p.m. – 7:00 p.m.) poster tours were organized where attendees could cast their vote for the best poster and use this one-on-one time with presenters to learn more, ask juicy questions and discuss their work. At 8:00 p.m., the awards ceremony took place for the best oral communication and best poster by young authors – for each area.

It was an impactful information sessions on research carried out by the groups of CIBER-BBN and CIBEREHD thematic areas.

The poster session is always a popular feature at CIBER-BBN Annual Meeting for acknowledgment NANBIOSIS units’ participation in the research carried out during the year. These are the works presented in 2023:

Targeted nanotoxin for the selective depletion of CXCR4+ cancer cells and immune cell recruitment in a colorectal cancer mouse model. Luis Miguel Carrasco-Díaz, Naroa Serna, Eric Voltà-Durán, Ugutz Unzueta, Esther Vázquez, Antonio Villaverde, Patricia Álamo, Lorena Alba-Castellón, Ramón Mangues. With participation of NANBIOSIS Units U1 Protein Production Platform (PPP) and U18 Nanotoxicology Unit . (Contact:

Improvement of the biodistribution of GLA enzyme by RGD-functionalized nanoGLA in a Fabry mouse model.
Zamira Vanessa Diaz Riascos, Marc Moltó Abad, Daniel Marijuan, Belen García Prats, Judit Tomsen Melero, Elisabet González Mira, Jose Luis Corchero, Andreu Soldevila, Miriam Royo, Alba Córdoba, Nora Ventosa, Guillem Pintos Morell, Simo Schwartz , Ibane Abasolo. With participation of the NANBIOSIS units U20 FVPR-In Vivo Experimental Platform, U3 Synthesis of Peptides Unit and U6 Biomaterial Processing and Nanostructuring Unit. (Contact:

An auristatin-based nanoconjugate induces apoptosis and inhibits the bone marrow leukemia burden in an acute myeloid leukemia mouse model. Annabel Garcia-León, Julián I. Mendoza, Ariana Rueda, Luis Carlos Navas, Vanessa Huaca, Ugutz Unzueta, Jorge Sierra, Esther Vázquez, Antonio Villaverde, Ramon Mangues, Isolda Casanova. With participation of NANBIOSIS Units U1 Protein Production Platform (PPP) and U18 Nanotoxicology Unit. (Contact: agarciale@santpau.cat)

FVPR/U20-NANBIOSIS Service Platform: from the Synthesis and Characterization of Nanotechnology-based Therapies, to the in vitro and in vivo Preclinical Validation. Diana Rafael, Zamira V. Diaz Riascos, Belén García, Alejandra Palacios, Sandra Mancilla, Laura Garcia, Ibane Abasolo. Description of NANBIOSIS Unit 20 FVPR-In Vivo Experimental Platform. (Contact: diana.fernandes_de_so@vhir.org)

Non-Viral Vector Development for Gene Therapy in the Treatment of Congenital Liver Metabolic Diseases Lucía Enríquez Rodríguez, Isabel Carbonell Simón, Idoia Gallego Garrido, Virginia Nieto Romero, Iván Maldonado Pérez, Aida Garcia Torralba, Gustavo Puras Ochoa, Miruna Giurgiu, Jose Carlos Segovia Sanz, María García Bravo, Oscar Quintana Bustamante, José Luis Pedraz Muñoz. With participation of NANBIOSIS U10 Drug Formulation unit. (Contact: lucia.enriquez@ehu.eus)

X-ray Photoelectron Spectroscopy (XPS) Analysis of Nitrogen Environment in Small Extracellular Vesicle Membranes: A Potential Novel Technique with Application for Cancer Screening.
Ana Martín-Pardillos, María Sancho-Albero , Silvia Irusta , Víctor Sebastián , Vicente Luis Cebolla , Roberto Pazo-Cid , Pilar Martín-Duque , Jesús Santamaría. With participation of NANBIOSIS U9 Synthesis of Nanoparticles Unit. (Contact: a.martin_pardillos@unizar.es)

Nanoparticle-based approach for blood-brain-barrier crossing and glioblastoma treatment. Júlia German-Cortés, Raquel Herrero, Diana Rafael, Ibane Abasolo, Fernanda Andrade. With participation of NANBIOSIS Unit 20 FVPR-In Vivo Experimental Platform. (Contact: fernanda.silva@vhir.org)

Exploiting mammalian cells for recombinant protein production: an improved protocol for transient gene expression. Aida Carreño Fibla, Roger Fernández Palomeras, José Luis Barra, Rosa Mendoza Moreno, Mercedes Márquez Martínez, Neus Ferrer-Miralles, Antonio Villaverde Corrales, José Luis Corchero Nieto. With participation of NANBIOSIS Units U1 Protein Production Platform (PPP). (Contact:jlcorchero@ciber-bbn.es)

Surface characterization of a PLA/Qr/Mg biocomposite after in vitro degradation in m-SBF. Juan Manuel Casares-López, Margarita Hierro-Oliva, Verónica Luque-Agudo, Amparo M. Gallardo-Moreno, María Luisa González-Martín. With participation of Unit 16 Surface Characterization and Calorimetry Unit (Contact: mlglez@unex.es)

The poster session was an effective forum for the exchange of information and a means to communicate ideas

Related news:

Read More

NANBIOSIS sesion in the CIBER-BBN and CIBEREHD annual meeting. SAFE-N-MEDTECH Project: Outcomes and Future Prospects.

The annual conference of the scientific áreas of CIBER (the most important Centre for Biomedical Research in Spain) are hotly awaited every year for the CIBER community as a foro to be updated about emerging key technologies and discuss about research lines and results, find new opportunities to collaborate and join efforts towards common objectives.

Moreover, this year, the Annual Conference of CIBER-BBN (Bioengineering, Biomaterials and Nanomedicine) has been organized as a collective event scheme together with the scientific area of CIBEREHD (Digestive and Liver Diseases). Both areas have already shared experiences of collaborative projects, demonstrating the complementarity of their fields. The results of these seed projects were presented on the firs working day, and a new edition of seed collaborative projects between the two areas was announced.

NANBIOSIS session took place in the afternoon of the second day. It was dedicated to SAFE-N-MEDTECH Project: Outcomes and Future Prospects.

SAFE-N-MEDTECH is a H2020 project (GA: 814607) funded by the European Commission under the topic DT-NMBP-02-2018-OITB for Safety Testing of Medical Technologies for Health (IA). The Open Innovation Test Bed (OITB) is an initiative launched by the European Commission with the aim of accelerating the development of medical devices based on nanotechnologies in Europe and abroad.

The project, ended this september, counted with 28 partners with a total funding of 15 million euros. The Consorcio Centro de Investigación Biomédica en Red (CIBER) is partner of the project through the Spanish Research Infrastructure NANBIOSIS -ICTS integrated by CIBER, CCMIJU and Ibima -Platafprma BIONAND, several units of the ICTS NANBIOSIS carried out some of the F/Q, in vitro and in vivo characterizations applied to the Pilot Test Cases described in the project.

Ángel del Pozo, from Biokeralty Research Institute AIE, coordinator of the project, explained the development of the project with its outcomes and its future prospects.

M. Luisa González, from UEx and Scientific Director of U16 of NANBIOSIS, explained the joint with CCMIJU on the Stryker case materials, testing bacterial colonization. This joint experience in the project has been organized as a new cutting-edge biomedical solution that NANBIOSIS ofer to its clients.

Montserrat Rodríguez-Núñez, from NANBIOSIS U2 Custom Antibody Service (CAbS) at IQAC-CSIC talked about the participation of the unit in the project by Assessment of affinity parameters for immunosensor development.

It also took place the annual meetting of the NANBIOSIS Scientific Advisory Committee to deliberate the key actions of the ICTS and.

Related news:

Read More

Open Position: Science Communicator for NANBIOSIS ICTS in Valencia

Deadline: 16/11/2023

If you are a Scientist and a passionate Communicator eager to develop your own ideas and strategy, keep reading!

The biomedicine consortium CIBER, is looking for a Ph.D. in science to develop the Communication Plan of the ICTS NANBIOSIS.

You will have the opportunity of working with top level researchers in the areal of biomaterials, bioingeniering and nanomedicine in a diverse and inclusive team working directly with the Coordinator of NANBIOSIS and the project manager team of CIBER-BBN

Applications must be filed at CIBER’s web portal untill November 16th.

We look for a Science Degree (Biology, Biotechnology, Biochemistry or similar), to work as Communication Manager of the ICTS NANBIOSIS, carrying out the design and execution of the ICTS Communication Plan. You will find all the details in the link of CIBER´s portal

The position requires good command of English and strong skills


NANBIOSIS is a Singular Scientific-Technical Infrastructure (ICTS) that supports biomedical research being able, for exemple, of developing a therapeutic agent and reaching its preclinical validation, taking advantage of the coordinated knowledge and experience of the main research groups in bioengineering, biomaterials and nanomedicine in Spain. It is composed by the Research Platforms of the “Consorcio Centro de Investigación Biomédica en Red, in ​​Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)”, the Infrastructure of Preclinical Testing and Development of Minimally Invasive Technologies of the “Centro de Cirugía de Mínima Invasión Jesús Usón (CCMIJU)” and the Nanoimaging unit of the “Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND).

Our main goals are:

1. Promote and consolidate the offer of the NANBIOSIS strategic services, which target advanced challenges in biomedical research: our Cutting-Edge Biomedical Solutions.

2. Promote the open and competitive access to NANBIOSIS services and, especially, to our strategic services.

3. Strengthen NANBIOSIS communication tools and enhance internationalization capabilities.

Help us transform the way our research and capacities connect with the science community and society.

Science communication matters!

Read More