+34 620 10 75 37info@nanbiosis.com

Posts on Jan 1970

U16-E01. TAM III isothermal nanocalorimeter system. (TA Instruments)

TAM III isothermal nanocalorimeter system including options for titration and perfusion. Also solution quasi-adiabatic calorimetry is available. (TA Instruments). Thermostatic bath: •• Working temperatures between 15 and 150 ºC •• Temperature scan < 2 ºC/h •• Stability: /- 10 μK on short timescales and /- 100 μK drift over 24 hours Calorimetric response: •• Precision better than 100 nW •• Reproducibility better than 1% •• Stability: < 10 nW on short timescales and < 40 nW drift over 24 hours Solution: •• Maximum temperature 80ºC •• Quasi-adiabatic mode of operation

Temporarily OUT OF ORDER

Read More

U16-S01. XPS (Remote) OUTSTANDING

Use of the system . X-ray photoelectron spectroscopy to measure quantitative elemental composition of surfaces (%) (except H and He).

Temporarily OUT OF ORDER

Read More

U16-S02. Ellipsometry (Remote) OUTSTANDING

Use of the system to measure the thickness of layers, and the composition, porosity and roughness of materials on a surface.

Read More

U16-S03. Calorimetry (Remote) OUTSTANDING

Tests in real time to measure:
·· Molecule-molecule interactions: Protein-protein, Receptor-ligand, Antibody-antigen, Biomaterial-molecule interactions, Biomaterial-cell interactions.
·· Microbial growth.
·· Cell metabolism.
Experiments of stability, growth,
etc, perfusion and dilution

Read More

U16-S04. Characterization by Tof-SIM (Remote) OUTSTANDING

Surface analysis of organic and inorganic materials (mass spectrum), map of chemical elements present in the surface of the sample (image), profile analysis shows sample analysis in depth.

Read More

U15-S01. Magnetometry (Remote) OUTSTANDING

Magnetometry on nanoparticles in solid form, ultra thin films, powders, liquids and even slurries:

  • Magnetization curves.
  • Coercitivity (normal and remanent).
  • Magnetization vs. time curves.
  • First Order Reversal Curves (FORC) diagrams.
  • Diamagnetic and paramagnetic susceptibility.
  • S* (measurement of the gradient in the second quadrant).
  • Remanent and saturation magnetization.
  • Initial permeability.

Measurements of magnetic properties of materials:

  • Diamagnetic, paramagnetic and ferromagnetic materials.
  • Magnetic recording media.
  • Magnetoresistive Random-Access Memory (MRAM).
  • Amorphous metals.
  • Giant Magnetoresistance Effect (GMR).

Geophysical Research:

  • Measurements of magnetization of rock, sediment and organic samples.

Biomedical Research:

  • Detection of small nanoparticles inside biological tissue in order to study the biodistribution and toxicity.
  • Study of the iron levels which are associated with some types of neurodegenerative disease.
Read More

U15-S02. Relaxometry (Remote) OUTSTANDING

Measurement of the relaxation times in aqueous solutions and biological samples containing superparamagnetic nanoparticles as contrast agents for MR images. For T1 in the continuous range 10 kHz to 80MHz; for T2 in the range 10 MHz to 80MHz.

Characterization of contrast agents for MR imaging, ascertaining their relaxivity and the dominant effect.

NMR relaxometry technique is an important analytical tool for NMR research and material characterization in both industrial and academic environments and has been successfully applied in a wide range of fields:

– Pharmaceutical Applications:

  • R&D of MRI contrast agents
  • Proteinstudies
  • R&D for formulations (e.g. properties of solutions; liposome carriers)
  • Quality control of products in manufacturing

– Polymers Applications:

  • R&D for new polymer materials
  • Control of levels of polymer additive
  • Quality control of products in manufacturing

– Oil, gas and petroleum applications:

  • Oil and gas surveying – rock pore size evaluation
Read More

U15-E02. T1 and T2 Nuclear Magnetic Resonance Relaxometry

T1 and T2 Nuclear Magnetic Resonance Relaxometry:

Stelar SmarTRACER (Italy) + Bruker (Germany) 2 T electromagnet. Fast Field Cycling designed to measure longitudinal nuclear magnetic relaxation as a function of the magnetic field intensity. Measurements of the longitudinal (T1) and transverse (T2) time constants as a function of the Larmor frequency.
•• Measurement range: continuous measurement from 10 kHz (almost null field) to 10 MHz (0.25T) to obtain T1.
•• Measurement range: measurement from 10 MHz (0.25T) to 80MHz (1.9T) at desired intervals to obtain T1 and T2.
•• Inhomogeneity lower than 150 PPM.
•• Main pulse sequences implemented with the possibility of modifying parameters to the design and programming of new sequences.
•• Temperature control from -120°C to +140°C with accuracy and stability of 0.1°C.

Read More

U15-E01. Alternating Gradient Magnetometer

Alternating Gradient Magnetometer:

MicroMag M2900-4 AGM (Princeton Measurements Corporation, USA) for the magnetic and mechanical characterization of nanoparticles in various different media:
•• Magnetic Moment Range: 1nA.m² to 5mA.m² full scale (1μemu to 5emu).
•• Resolution: 0,005% of full scale with 60% overrange capability.
•• Speed of measurement: 100 ms/point.
•• High sensitivity: 10 pA.m² (10 nemu) of standard deviation at room temperature and with 1 second of averaging time.
•• High performance with samples of very small magnetization and dimensions (few nanometers).
•• The AGM can accommodate a large range of samples with widely different properties.

Read More

U5-E01. Tissue Engineering Tool 3D-300 series (nScript Inc.) for rapid prototyping

Specifications:

›› Three heads for injection of different materials:
•• Polymers
•• Ceramics
•• Living cells

›› Allowed viscosities ranging from 1 to 106 centipoises.
›› System for temperature and humidity control to enable the printing conditions to be adjusted. It is possible to create a microenvironment appropriate for each mixture of materials and proteins and to achieve high rates of cell viability.
›› Controlled by Software .
›› Visual monitoring system based on a digital camera, firewire cameras and high magnification lenses, with detection and measurement of colormetric/monochromatic variations.
›› Mapping system using a laser sensor for control of normal and extended working distances. It includes Target, Grid and Path mapping.
›› High-precision dispensing pump for dynamic control of the flow rate.

›› Position control system:
•• X/Y/Z accuracy: ±10 μm
•• X/Y reproducibility: ±2 μm
•• X/Y resolution: 0.5 μm
•• X/Y velocity: 304 mm/s (12”/s)
•• X/Y displacement: 304X 152 mm (12”X6”)
•• Z displacement: 101 mm (4”)

In addition, it should be noted that the system is sited in a clean room with a controlled environment and supply of the gases required for these tests.

Read More