+34 620 10 75 37info@nanbiosis.com

Nanbiosis

U6-S08. Tangential flow filtration

Tangential flow filtration

Tangential flow filtration (TFF) is a process of separation widely used in bio-pharmaceutical and food industries. It is different from other filtration systems in that the fluid is passed parallel to the filter, rather than being pushed through a membrane perpendicularly which can clog the filter media. This method is preferred for its continuous filtration and reproducible performance. The particles that pass through the membrane, the permeate, are put off to the side, while the rest, the retentate, is recycled back to the feed.

Customer benefits

Tangential flow filtration is used in the following processes:

  • Concentration: Increases the concentration of a solution by removing fluids while keeping the solute molecules. This process is done by selecting a filter significantly smaller than the solute molecules to allow for a higher retention of solute molecules.
  • Diafiltration: The separation of small and large particles, leaving the smaller particles behind without altering the overall concentration.

Target customer

  • Pharmaceutical industry
  • Food Industry
  • Chemical industry
  • Materials research centers

References

M.Köber, et al., J.C.I.S 2023, 631, 202-211

Read More

U6-S09. Multimode plate reader

Multimode plate reader

The Infinite 200 PRO is an easy-to-use multimode plate reader family that offers affordable high-performance detection solutions empowered by monochromator- or filter-based technologies. The six new tailored configurations provide excellence in ELISA assays, nucleic acid quantifications, reporter assay technologies, and drug discovery assays including HTRF® and fluorescence polarization.
Dual-mode plate reader with monochromator-based optics for absorbance and sensitive fluorescence (top and bottom reading) applications. Your adjustable tool, even for low concentration nucleic acid and protein quantification.
The Infinite M Nano+ has an excitation monochromator optimized for wavelength accuracy and precision, ensuring excellent performance for every absorbance and fluorescence assay.Engineered for absorbance and fluorescence measurements, the system’s highly sensitive Quad4 Monochromators™ minimize stray light, delivering exceptional flexibility with sensitivity levels close to comparatively priced filter-based instruments.

Customer benefits

Intuitive, workflow-oriented software (i-control) which allows you to create a workflow for each application, using ‘drag and drop’ processing steps to generate your assay protocol, which can be saved for future use.

Highlights:

  • Real-time export data
  • Extended dynamic range
  • Automated z-focusing

Key applications:

  • Absorbance-based DNA/RNA quantification and purity checks
  • Fluorescence-based DNA/RNA quantification (PicoGreen, RiboGreen®)
  • Absorbance-based protein quantification (BCA, Bradford, Lowry, etc.)
  • Fluorescence-based protein quantification (eg. NanoOrange®)
  • Absorbance- and fluorescence-based ELISAs600 nm growth curves (bacteria, yeast)
  • Enzyme kineticsCompound characterization

Target customer

  • Pharmaceutical industry
  • Food Industry
  • Chemical industry
  • Materials research centers

Read More

U6-S02. High-pressure phase analysis – solubility, emulsification (Remote) OUTSTANDING

High-pressure phase analysis – solubility, emulsification.

This phase equilibria unit is built for the measurement and detection of phase equilibria and phase transitions by optical means.
The mixture of solute and solvent gas is agitated by the magnetic stirrer. Whenever samples are drawn from the top or the bottom connection in the cell, the directly connected counterbalance piston moves towards the centre of the cell, this keeping the pressure in the measuring cell constant even during the sampling operation. No need to add additional solvent gas, which would change mass ratio and temperature and consequently result in a disturbed equilibrium.

Customer benefits

Phase equilibria cell:
• Capacity: 29-55 mL (depending on piston position)
• Operating pressure max.: 200 Bar
• Operating temperature max.: 150 °C

Counterbalance piston to maintain constant pressure during sampling operation
• Optical windows: 2x ø28mm (sapphire)
• Optical path length: 58 mm

Double wall heating jacket for heating with external thermostat.
High-pressure thermocouple type K (inner temperature)

Target customer

  • Pharmaceutical industry
  • Food Industry
  • Chemical industry
  • Materials research centers

References

N-Grimaldi, et al. ACS Nano 2017, 11, 10774-10784

Read More

U6-S01. Use of High-pressure laboratory-scale plant

Use of High-pressure laboratory-scale plant

with 50, 100 and 300 m reactors for the processing of biomaterials. Processing of cytotoxic compounds when required.

Preparation of soft molecular materials with controlled structure at supramolecular, micro- and nanoscopic level, using one-step methodologies based on green compressed fluids (i.e. compressed and supercritical CO2).Micro- and nanoparticulate single compounds with high supramolecular homogeneity (i.e., pure polymorphic phases, materials with single polymer folding, etc.).

  • Particulate polymeric matrix uniformly loaded with active compounds (therapeutics, cosmetic ingredients, catalyst, pigments, and dyes, etc.)
  • Dispersed systems (suspensions, liposomes, emulsions, vesicles) with narrow particle size distribution and high morphological homogeneity.
  • Porous materials, either crystalline or amorphous, with defined porosity and porous size.

Customer benefits

Lab-scale high pressure systems, based on a 50 mL, a 100 mL and a 300 mL stirred high pressure autoclaves equipped with pumps for the supply of compressed fluids and liquid solutions. The high-pressure systems can also optionally be equipped with several filters, manometers, thermocouples, and back pressure regulators. The maximum operative pressure is 23 MPa and the maximum operative temperature is 200 °C.
The 300 mL system is also equipped with a mass flowmeter, and a data acquisition system.
All the plants have been designed for micro- and nanostructuring molecular and soft materials.

Target customer

  • Pharmaceutical industry
  • Food Industry
  • Chemical industry
  • Materials research centers

References

Read More

U3-S02. Post synthesis peptide modification (On-site&Remote) OUTSTANDING

Post synthesis peptide modification (On-site&Remote) OUTSTANDING

Post-synthesis peptide modification such as:
– Cyclization through a disulphide bridge, amide, ester, thiosester, thioether, or various staple bonds.
– Biotinylation and/or incorporation of various imaging probes at the N-terminus, C-terminus or on some amino acid side chains (Lys, Cys…).
– Convenient peptide derivatisation for further conjugation by introducing a maleimide, succinimidyl, alkyne or azide-containing spacers.
– Peptide conjugation to polymers, proteins, probes and small molecules.
Multivalent peptide presentation molecules.

Customer benefits

  • Extensive experience in the synthesis of cyclic peptides (disulfide bridge, lactam, lactone, thioester, thioether).
  • Extensive experience in the synthesis of stapled peptides
  • Development of several peptide cyclization methods.
  • Extensive experience in the derivatisation of peptides for conjugation and attachment to various types of molecules (nanoparticles, polymers, imaging probes, small molecules).
  • Development of various strategies for the introduction of post-synthesis modifications.
  • Development of conjugation methodology.
  • Development of methodology for the generation of multivalent peptide presentation molecules.

Target customer

  • Research groups (drug delivery, molecular biology, pharmacology, nanotechnology, biotechnology)
  • Companies (biotech and pharma companies).

References

  • Direct Quantitative Immunochemical Analysis of Autoinducer Peptide IV for Diagnosing and Stratifying Staphylococcus aureus Infections. Montagut, Enrique-J.; Acosta, Gerardo; Albericio, Fernando; Royo, Miriam; Godoy-Tena, Gerard; Lacoma, Alicia ; Prat, Cristina ; Salvador, Juan-Pablo; Marco, Maria-Pilar. ACS Infectious Diseases (2022), 8, 645-656.
  • Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion. Martinez-Miguel, Marc; Castellote-Borrell, Miquel; Kober, Mariana; Kyvik, Adriana R. ; Tomsen-Melero, Judit ; Vargas-Nadal, Guillem; Munoz, Jose; Pulido, Daniel ; Cristobal-Lecina, Edgar; Passemard, Solene; oyo, Miriam ; Mas-Torrent, Marta ; Veciana, Jaume ; Giannotti, Marina I. ; Guasch, Judith ; Ventosa, Nora ; Ratera, Imma. ACS Applied Materials & Interfaces (2022), 14, 48179-48193.
  • Engineering a Nanostructured Nucleolin-Binding Peptide for Intracellular Drug Delivery in Triple-Negative Breast Cancer Stem Cells. Pesarrodona, Mireia; Sanchez-Garcia, Laura; Seras-Franzoso, Joaquin; Sanchez-Chardi, Alejandro; Balta-Foix, Ricardo; Camara-Sanchez, Patricia; Gener, Petra; Jara, Jose Juan; Pulido, Daniel ; Serna, Naroa; Schwartz, Simo; Royo, Miriam ; Villaverde, Antonio; Abasolo, Ibane ; Vazquez, Esther. ACS Applied Materials & Interfaces (2020), 12, 5381-5388.
  • Synthesis of Stable Cholesteryl-Polyethylene Glycol-Peptide Conjugates with Non-Disperse Polyethylene Glycol Lengths. Cristobal-Lecina, Edgar; Pulido, Daniel; Martin-Malpartida, Pau; Macias, Maria J.; Albericio, Fernando; Royo, Miriam. ACS Omega (2020), 5, 5508-5519.
  • Highly Versatile Polyelectrolyte Complexes for Improving the Enzyme Replacement Therapy of Lysosomal Storage Disorders. Giannotti, Marina I.; Abasolo, Ibane; Oliva, Mireia; Andrade, Fernanda; Garcia-Aranda, Natalia; Melgarejo, Marta; Pulido, Daniel; Corchero, Jose L.; Fernandez, Yolanda; Villaverde, Antonio; Royo, Miriam; Garcia-Parajo, Maria F.; Sanz, Fausto; Schwartz, Simo. ACS Applied Materials & Interfaces (2016), 8(39), 25741-25752.
  • Gated mesoporous silica nanoparticles using a double-role circular peptide for the controlled and target-preferential release of doxorubicin in CXCR4-expressing lymphoma cells. de la Torre, Cristina; Casanova, Isolda; Acosta, Gerardo; Coll, Carmen; Moreno, Maria Jose; Albericio, Fernando; Aznar, Elena; Mangues, Ramon; Royo, Miriam; Sancenon, Felix; Martinez-Manez, Ramon. Advanced Functional Materials (2015), 25, 687-695.
  • Multivalent dendrimers presenting spatially controlled clusters of binding epitopes in thermoresponsive hyaluronan hydrogels. Seelbach, Ryan J.; Fransen, Peter; Peroglio, Marianna; Pulido, Daniel; Lopez-Chicon, Patricia; Duttenhoefer, Fabian ; Sauerbier, Sebastian; Freiman, Thomas; Niemeyer, Philipp; Semino, Carlos; Albericio, Fernando; Alini, Mauro; Royo, Miriam; Mata, Alvaro; Eglin, David. Acta Biomaterialia (2014), 10, 4340-4350
  • Triazene as a powerful tool for solid-phase derivatization of phenylalanine containing peptides: Zygosporamide analogues as a proof of concept. Torres-Garcia, Carolina; Pulido, Daniel; Albericio, Fernando; Royo, Miriam; Nicolas, Ernesto. Journal of Organic Chemistry (2014), 79(23), 11409-11415.

3. Peptides-System for acidolactic cleavage of the peptide resin boundby anhydrous HF
Read More

U3-S01. Synthesis of peptides and characterisation (On-site&Remote) OUTSTANDING

Synthesis of peptides and characterisation (On-site&Remote) OUTSTANDING

Peptide production on various scales from mg (scale: 10 mg, 50 mg and 100 mg) and grams.
Synthesis of peptides containing phosphorylated amino acids, acylated or methylated side chains (lysine) or non-natural amino acids.
Peptides can be delivered as synthesis crudes (without purification) and purified (≥95% by HPLC).
Peptides are characterized by HPLC and HPLC-MS

Customer benefits

  • Extensive experience on peptide synthesis.
  • Experience in difficult sequences.
  • Control quality at different synthesis points.
  • Capability to design diverse synthesis strategies and purification
  • Development of peptide synthesis methodology.

Target customer

  • Research groups (drug delivery, molecular biology, pharmacology, nanotechnology, biotechnology)
  • Companies (biotech and pharma companies).

References

  • Pharmacological activation of insulin-degrading enzyme improves insulin secretion and glucose tolerance in diet-induced obese mice. Sanz-Gonzalez, Alba; Cozar-Castellano, Irene; Broca, Christophe ; Sabatier, Julia; Acosta, Gerardo A. ; Royo, Miriam ; Hernando-Munoz, Carla; Torroba, Tomas ; Perdomo, German ; Merino, Beatriz. Diabetes, Obesity and Metabolism (2023), 25, 3268-3278.
  • Amide Formation: Choosing the Safer Carbodiimide in Combination with OxymaPure to Avoid HCN Release. Manne, Srinivasa Rao; Luna, Omar; Acosta, Gerardo A.; Royo, Miriam ; El-Faham, Ayman ; Orosz, Gyorgy; de la Torre, Beatriz G. ; Albericio, Fernando. Organic Letters (2021), 23, 6900-6904.
  • Carbosilane Dendron-Peptide Nanoconjugates as Antimicrobial Agents
  • By: Fernandez, Jael; Acosta, Gerardo; Pulido, Daniel; Maly, Marek; Copa-Patino, Jose L.; Soliveri, Juan; Royo, Miriam; Gomez, Rafael; Albericio, Fernando; Ortega, Paula; de la Mata, F. Javier. Molecular Pharmaceutics (2019), 16, 2661-2674.
  • Optimized Stepwise Synthesis of the API Liraglutide Using BAL Resin and Pseudoprolines. Carbajo, Daniel; El-Faham, Ayman; Royo, Miriam; Albericio, Fernando. ACS Omega (2019), 4, 8674-8680
Read More

U2-S01. Scientific and technical support (Remote)

Scientific and technical support and advice on immunogen design, immunoreagent synthesis and production, antibody production and immunoassay design and development.

Read More

U6-E10. Nanosight NS-300 for Nanoparticle Tracking Analysis by fluorescence mode

Nanosight NS300; Malvern Instruments

Descripción: Automated analysis of the size distribution and concentration

The Malvern NanoSight NS300 uses the technology of Nanoparticle Tracking Analysis (NTA). This unique technology utilizes the properties of both light scattering and Brownian motion in order to obtain the size distribution and concentration measurement of particles in liquid suspension. A laser beam is passed through the sample chamber, and the particles in suspension in the path of this beam scatter light in such a manner that they can easily be visualized via 20x magnification microscope onto which is mounted a camera. The camera operates at 30 frames per second (fps), capturing a video file of the particles moving under Brownian motion. The software tracks many particles individually and using the Stokes-Einstein equation calculates their hydrodynamic diameters.

More info:  http://www.malvern.com/en/products/product-range/nanosight-range/nanosight-ns300/default.aspx

Technical Specifications:

Wavelength: 405nm (violet), 488nm (blue), 532nm (green) or 642nm (red).

Temperature control range: 5°C below ambient to 55°C.

Stage: Fixed stage.

Focus: Computer controlled motorized focus.

Camera:

Fluorescence: Motorized 6 place filter wheel with choice of filters.

Particle size: 10nm to 2000nm.

Concentration range: 106to 109 particles per mL.

Read More

U6-S14. Quantitative studies of biomolecular interactions by calorimetric measurements (On-site) OUTSTANDING

Quantitative studies of biomolecular interactions by calorimetric measurements

Isothermal Titration Calorimetry (ITC) is a thermodynamic technique that directly measures the heat released or absorbed during a biomolecular binding event (protein-small molecule, protein-protein, target-drug, enzyme-inhibitor, antibody-antigen, protein-DNA, protein-lipid, small molecule-small molecule). Measurement of this heat allows accurate determination of binding constants (KB), reaction stoichiometry (n), enthalpy (ΔH) and entropy (ΔS), thereby providing a complete thermodynamic profile of the molecular interaction in a single experiment. Because ITC goes beyond binding affinities and can elucidate the mechanism of the molecular interaction, it has become the method of choice for characterizing biomolecular interactions.
The equipment used for this purpose is VP-ITC (GE HealthCare-Microcal).

Customer benefits

Applications range goes from drug design to fundamental research, such as understanding and regulating signal transduction pathways. These systems provide direct marker-free and in-solution measurement of binding affinity and thermodynamic parameters in a single experiment. They have high sensitivity, low sample consumption and automation options to minimise handling time.

Target customer

  • Biochemical and Pharmaceutical companies.
  • Biology and biochemistry research groups.

Additional information

M.Köber, et al., Journal of Colloid and Interface Science 631 (2023) 202–211. DOI: 10.1016/j.jcis.2022.10.104

Compra al mejor precio MALVERN MicroCal VP-ITC | Bimedis

Read More

U24-E06. Cardiac electrophysiology lab with navigation (CARTO 3) and biotherapeutics delivery (NOGA XP) systems

Cardiac electrophysiology lab with navigation (CARTO 3) and biotherapeutics delivery (NOGA XP) systems.

Read More