+34 620 10 75 37info@nanbiosis.com

Nanbiosis

U6-S14. Quantitative studies of biomolecular interactions by calorimetric measurements (On-site) OUTSTANDING

Quantitative studies of biomolecular interactions by calorimetric measurements

Isothermal Titration Calorimetry (ITC) is a thermodynamic technique that directly measures the heat released or absorbed during a biomolecular binding event (protein-small molecule, protein-protein, target-drug, enzyme-inhibitor, antibody-antigen, protein-DNA, protein-lipid, small molecule-small molecule). Measurement of this heat allows accurate determination of binding constants (KB), reaction stoichiometry (n), enthalpy (ΔH) and entropy (ΔS), thereby providing a complete thermodynamic profile of the molecular interaction in a single experiment. Because ITC goes beyond binding affinities and can elucidate the mechanism of the molecular interaction, it has become the method of choice for characterizing biomolecular interactions.
The equipment used for this purpose is VP-ITC (GE HealthCare-Microcal).

Customer benefits

Applications range goes from drug design to fundamental research, such as understanding and regulating signal transduction pathways. These systems provide direct marker-free and in-solution measurement of binding affinity and thermodynamic parameters in a single experiment. They have high sensitivity, low sample consumption and automation options to minimise handling time.

Target customer

  • Biochemical and Pharmaceutical companies.
  • Biology and biochemistry research groups.

Additional information

M.Köber, et al., Journal of Colloid and Interface Science 631 (2023) 202–211. DOI: 10.1016/j.jcis.2022.10.104

Compra al mejor precio MALVERN MicroCal VP-ITC | Bimedis

Read More

U24-E06. Cardiac electrophysiology lab with navigation (CARTO 3) and biotherapeutics delivery (NOGA XP) systems

Cardiac electrophysiology lab with navigation (CARTO 3) and biotherapeutics delivery (NOGA XP) systems.

Read More

U1-S05. Training courses in protein production (Biomolecules production)

Training courses in protein production (Biomolecules production)

The PPP unit provides personalised training courses in recombinant protein production and purification either at our facilities or at the client’s.
The courses can include practical training sessions, for example, in the use of FPLC-AKTA systems.

Examples of trainings are:

  • “Strategies for optimization of recombinant protein production” Advanced and Initial levels.
  • Theoretical-practical training in the management of the FPLC-AKTA system.

Applications: For users who want to use FPLC-AKTA systems. For staff of biotechonology companies. For students of Ph.D. programs.

Customer benefits

The PPP Unit specialises in designing, producing, and purifying recombinant proteins on demand, tailored to customers‘requirements. We have an extensive expertise in designing different strategies to achieve successfully final products according customers‘ needs. The service is completely personalised to ensure that the training fits the needs of the costumer. The training courses can be made collectively or individually.

Target customer

The PPP Unit extends its services across the scientific community, serving both private and public research organizations. This includes support for research centres, universities, hospitals, and companies in the sector. Leveraging our connection with the university, the PPP unit also provides specialised courses as part of the official master’s degrees and PhD programs at UAB. The training courses can be made collectively or individuality.

Read More

MEMBERS OF THE IBB WILL INVESTIGATE THE EARLY DIAGNOSIS OF PARKINSON

Researchers from the Folding and Conformational Diseases Group at the Institute of Biotechnology and Biomedicine Group are part of the European project Neuromed to develop molecules and detect biomarkers of this disease before the signs of neurodegeneration become evident.

The Neuromed project is led by the University of Zaragoza and aims to design molecules, drugs and new diagnostic tools early for three neurodegenerative diseases in which defective proteins are involved: Parkinson’s disease and two rare diseases, phenylketonuria and protein TTR Amyloidosis.

The coordination of the Parkinson’s research line will be directed, from the IBB, by Salvador Ventura, principal researcher and director the  Protein Folding and Conformational Diseases group and Professor at the Department of Biochemistry and Molecular Biology at the UAB. Researchers in his group are also involved in the project.

The goal of Professor Ventura and his collaborators is focused on developing a diagnostic kit that will allow early and sensitive detection of the presence of Parkinson’s biomarkers in blood and cerebrospinal fluid, in such a way  that the treatment of the disease can begin before the signs of neurodegeneration are obvious.

Neuromed strikes a common element of the three diseases to be investigated: their conformational defects. The research will look for new molecules that can even recover the activity of defective proteins. The combination of computational and biophysical techniques to identify and develop compounds that are tested in cell and animal models would allow the development of drugs active on the three diseases, and will contribute to the early diagnosis of Parkinson.

The Consortium Neuromed involves six partners from Spain, Portugal and France. The research groups, Including the one of professor Ventura, have consolidated expertise in the approach to diagnose and treat these diseases. The project will run for 14 months and has a total cost exceeding EUR 1 million.

Nanbiosis Ibb news
Read More