+34 620 10 75 37info@nanbiosis.com

Posts by Nanbiosis

A rare genetic bone pathology is identified from massive sequencing methods

The Andalusian Center for Nanomedicine and Biotechnology (BIONAND) and the Center for Biomedical Research Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), both partners of NANBIOSIS, in collaboration with the International Registry of Skeletal Dysplasias of the University of California (Los Angeles) and Masaryk University, of the Czech Republic have described a new genetic disease of the skeleton using a precision medicine strategy.

This disease consists of extreme bone fragility with lack of mineralization and skeletal deformation associated with joint dislocation and heart disease, as well as a lung deficiency that causes perinatal lethality -at the time of birth-. Using massive sequencing methods – of all genes – researchers have identified the mutations that caused a type of rare bone pathology, specifically, those of the ‘LAMA5’ gene, responsible for encoding a cellular matrix protein that surrounds blood vessels in skeletal tissues.

Our scientific team has spent years investigating rare genetic syndromes that affect the skeleton in order to provide a medical solution to patients with difficult diagnosis and treatment,” explains the researcher from the Department of Cell Biology, Iván Durán, lead author of this study, whose results have been published in the scientific journal ‘EBIOMEDICiNE’.

According to the expert, precision medicine is the key to discovering what genetic and molecular factors cause this type of pathology and, therefore, understanding the mechanism that causes them and being able to develop personalized therapies.

Thus, researchers have also described the disease mechanism by generating cellular models by gene editing, mimicking the mutations in ‘LAMA5’, with the aim of confirming whether these are the origin and knowing the molecular process that triggers the problem. These cellular models have been generated by genetic editing with CRISPR, introducing mutations that cause a null or hypomorphic gene.

“Thanks to these models, we discovered a new signaling pathway that governs the formation of the skeleton – so that the bone grows and remains healthy – which means that our work has not only led to the discovery of a new disease, but to a mechanism unprecedented that can be exploited for common bone disorders ” –explains Durán, “the presence of ‘LAMA5’ between cells that direct skeletal formation indicates, therefore, that the appearance of signals from special blood vessels can be a very effective weapon for bone repair and regeneration. Blood vessels not only provide irrigation to the bone, but also carry signals and house niches of stem cells that can be mobilized to induce a regenerative process. ‘LAMA5’ seems to be a key component for harboring pericyte-type stem cells”.

Article of reference:

Barad M, Csukasi F, Kunova-Bosakova M, Martin J, Zhang W, Taylor SP, Dix P, Lachman R, Zieba J, Bamshad M, Nickerson D, Chong JX, Cohn DH, Krejci P, Krakow D, Duran I. Mutations in LAMA5 disrupts a skeletal noncanonical focal adhesion pathway and produces a distinct bent bone dysplasia. 2020 EBioMedicine. Nov 23;62:103075. doi: 10.1016/j.ebiom.2020.103075

Read More

Inkjet Priting Technology, Manufacture and validation of electrochemical sensors in medical applications

Miguel Zea, a member of the NANBIOSIS U8 Micro– Nano Technology Unit presents a video explaining his research is based on the manufacture and validation of electrochemical sensors in medical applications: –“Using InkJet printing I have made sensors in different plastics and paper. Also using a novel approach in each sensor. I have made two pH sensors using novel Platinum and polymer inks and also a cortisol sensor on paper”.

With this video, Miguel Zea, participates in the second edition of ‘I investigate, I am CSIC’. It is a competition hold by The Spanish National Research Council (CSIC) for its doctoral students to disseminate their doctoral thesis. Through short videos of maximum duration of 3 minutes, predoctoral scientists explain their research and results for the public in general

Here you can see the video and vote with a like!

Read More

Outstanding Young Researcher Award at ICESS 2021 to Konstantinos Mountris (NANBIOSIS U27).

Konstantinos Mountris researcher from the BSICoS group of CIBER-BBN and I3A at the University of Zaragoza has been granted the Outstanding Young Researcher Award at the International Conference on Computational & Experimental Engineering and Sciences (ICCES) in relation with the work Radial Point Interpolation Mixed Collocation (RPIMC) Method for The Solution of Reaction-Diffusion Equation in Cardiac Eletrophysiology (for the simulation of myocardial infarction).

This work was already recognized in the Congress of Computing in Cardiology (CinC) held recently where Konstantinos Mountris and Esther Pueyo have received the Maastricht Simulation Award (MSA)Konstantinos Mountris acknowledged the contribution of NANBIOSIS U27 High Performance Computing :“using the HPC services of NANBIOSIS U27 we were able to validate the RPIMC method as a promising alternative to Finite Element Method performing large-scale simulations of myocardial infarction in biventricular swine models

Related news: Understanding human heart behaviour with mathematics and engineering.

Read More

New Scanning Electron Microscope and on line Seminar to explain it for internal and external accesses on NANBIOSIS U12

A new Scanning Electron Microscope (Hitachi TM-4000 Plus II) has been installed at the Nanostructured liquid characterization unit of NANBIOSIS ICTS (Unit 12) of CIBER-BBN and IQAC-CSIC.

An online seminar will be given by Susana Vilchez on January 14th at 12h to explain the various features, functions and capabilities of this new instrument, Tabletop Scanning Electron Microscope Hitachi TM-4000 Plus II, that is open for both internal and external users.

Those interested in attending the seminar can contact unit 12 of NANBIOSIS:

Read More

NANBIOSIS Unit 2 obtains the Biosafety Level 2 Accreditation

The laboratory of NANBIOSIS Unit 2 from IQAC-CSIC and CIBER-BBN has obtained the biosafety level 2 accreditation, which allows the laboratory to work with biological agents classified in the risk group 2.

Biological containment level 2 (NBS2) laboratories are generally required to work with any derivative of human blood or other primates, body fluids (especially when they are visibly contaminated with blood), cell lines, or tissues in which has uncertainty about the presence of an infectious agent.

Also, the group participates in the COVID project “Point-of-care tests for the rapid detection of SARS-CoV-2 (POC4CoV)”, funded by the CSIC. This project involves the handling of swabs and serum samples from both positive and negative SARS-CoV-2 patients. Lluïsa Vilaplana, member of research group Nb4D of CIBER-BBN and IQAC-CSIC, led by Dra. M. Pilar Marco, wich Coordinates NANBIOSIS U2, has coordinated the process to obtain the accreditation.

The laboratory has an antechamber or clean locker room, a card-controlled entry system and a space for the storage of materials and reagents. It has also an independent air conditioning system, a specific air renewal system and a biosafety cabin type 2A, with HEPA filter. In addition, it is equipped with a suitable lighting system, an emergency lighting system and a large observation peephole on the door.

In addition to this specific equipment, the laboratory is equipped with an inverted microscope, centrifuge, thermostatic bath, stirrers, incubators, refrigerator and autoclave for sterilization and waste management.

The Nanobiotechnology for Diagnosis (Nb4D) research group , focus the research on the development of biomarkers for the diagnosis of infectious diseases. Nowadays, the group participates in five research projects related to this topic. These projects involve working with clinical samples for the detection of the pathogens Pseudomonas aeruginosa (Gram – type bacteria) and Staphylococcus aureus (Gram + type bacteria), both classified in risk group 2.

Source of information: IQAC-CSIC Communication

Read More

Chemical composition of explanted deteriorated nephrostomy polyurethane-catheters through X-ray photoelectron spectroscopy

Researchers of Nanbiosis U16 Surface Characterization and Calorimetry Unit of CIBER-BBN and University of Extremadura in Badajoz, are the authors of an article published by Materials Chemistry and Physics,

The researchers studied the surface chemical information of thirteen used catheters that had remained in patients for two months, using the XPS technique with the purpose of this communication is to report.
Compositional changes in relation to unused catheters provided information on the degree of the chemical degradation suffered. ATR-IR
added information on the chemical characterization of the samples
and Scanning Electron Microscopy (SEM) analysis will advise on topographical changes.

The XPS technique is optimum to analyzed the surface chemical composition of medical polymer device. Applied to the ureteral catheters, XPS shows on the surface of damaged catheters calcium and other ions from urine. XPS was performed by the ICTS “NANBIOSIS”, more specifically by the Surface Characterization and Calorimetry Unit of the CIBER in Bioengineering, Biomaterials & Nanomedicne (CIBERBBN)
and the SACSS-SAIUEx of the University of Extremadura (UEx)

Ureteral catheters are a fundamental part of the modern urologist’s armamentarium. X-ray photoelectron spectroscopy (XPS) was used for the first time as a powerful analytical tool for the study of the chemical
composition of nephrostomy catheters retrieved from patients who had undergone nephrostomy to detect their chemical deterioration inside the human body. Depth profile analysis provided not only the composition of the surface but also that of the catheter bulk. The results obtained by XPS showed the presence of calcium and other ions, such as phosphorus, sulphur and fluorine in the explanted deteriorated catheters. The detection of barium on the surface of all the retrieved catheters has special relevance. This chemical element is usually incorporated as a radiomarker in the catheter polymeric matrix and its diffusion from the bulk material to the surface must be responsible for its XPS detection. The accumulation of high levels of this element from toxic barium salts in cases of urine drainage failure could lead to its adsorption from the surrounding tissues into the patient’s body, thus compromising the safety concentrations of this soft alkaline earth metal.

Article of reference:

Chemical composition of explanted deteriorated nephrostomy polyurethane-catheters through X-ray photoelectron spectroscopy María Fernández-Grajera, Margarita Hierro-Oliva, Luis Fernández-deAlarcón, Amparo M.Gallardo-Moreno. Materials Chemistry and Physics Volume 239,  2020, 121979 https://doi.org/10.1016/j.matchemphys.2019.121979

Read More

Non-viral mediated gene therapy in human cystic fibrosis airway epithelial cells recovers chloride channel functionality

Researchers of CIBER-BBN Units of NANBIOSIS: U29 Oligonucleotide Synthesis Platform (OSP) at IQAC_CSIC, led by Prof. Ramón Eritja and U10 Drug Formulation, at UPV-EHU, led by Prof José Luis Pedraz, are coauthors of an article published by International Journal of Pharmaceutics.

Gene therapy strategies based on non-viral vectors are currently considered as a promising therapeutic option for the treatment of cystic fibrosis (CF), being liposomes the most commonly used gene carriers. Niosomes offer a powerful alternative to liposomes due to their higher stability and lower cytotoxicity, provided by their non-ionic surfactant and helper components. In this work, a three-formulation screening is performed, in terms of physicochemical and biological behavior, in CF patient derived airway epithelial cells. The most efficient niosome formulation reaches 28% of EGFP expressing live cells and follows caveolae-mediated endocytosis. Transfection with therapeutic cystic fibrosis transmembrane conductance regulator (CFTR) gene results in 5-fold increase of CFTR protein expression in transfected versus non-transfected cells, which leads to 1.5-fold increment of the chloride channel functionality. These findings highlight the relevance of niosome-based systems as an encouraging non-viral gene therapy platform with potential therapeutic benefits for CF.

The article acknowledges U10 Drug Formulation, for the intellectual and technical assistance

Article or reference:

Non-viral mediated gene therapy in human cystic fibrosis airway epithelial cells recovers chloride channel functionality-Sainz-Ramos, M., Villate-Beitia, I., Gallego, I., A.L. Qtaish, N., Lopez-Mendez, T.B., Eritja, R., Grijalvo, S., Puras, G., Pedraz, J.L. International Journal of Pharmaceutics, 588, art. no. 119757, 2020. https://doi.org/10.1016/j.ijpharm.2020.119757

Read More

New equipment for calorimetry and surface characterization for NANBIOSIS U16

NANBIOSIS unit 16 Surface Characterization and Calorimetry Unit form CIBER-BBN and University of Extremadura offers the performance of tasks of physical-chemical characterization of surfaces using techniques such as ellipsometry, calorimetry, X-ray photoelectronic spectroscopy (XPS) and detection of secondary ions by means of mass spectrometry by time of flight (Tof-SIMS). Recently, new equipment acquired through the execution an investment of 1.3 million euros, cofinanced with FEDER funds, the Ministry of Economy and Competitiveness and Junta de Extremadura, Regional Ministry of Economy, Science and Digital Agency, througth the project FICTS1420-14-09. These equipments are a microdroplet and picodroplet contact angle goniometry system and an optical profilometry system.

Equipment acquired

PEAK AND MICRO DROP GONIOMETRY SYSTEM

This system allows to measure contact angles automatically, controlling by software, the deposition of drops of different liquids, their analysis and the orientation of the substrate, as well as pending drops. In addition, the microdroplet system has a tilting base that allows the samples to be tilted by at least 90o. It also includes a thermostatic chamber, for temperature changes of the sample with a range between 5 and 90 ºC, and a chamber for humidity control.

Obtaining surface tension, through contact angle measurements, is a factor to consider in technologies of biomedical interest such as implants and other materials that must be in contact with biological fluids. In these systems the contact angle is related to the wettability, the hydrophobicity of the surface and the adhesion capacity of substances such as proteins or other compounds on the surfaces.

In the case of pico-droplet measurements, the system allows to very precisely dose drops much smaller than in the previous case, which can be as low as 20 picoliters, as well as to analyze their shape to measure the contact angle. This fact solves the problem of measuring wettability in very small structures, such as capillaries, microchips, joints created in the union of two materials, etc.

PROFILOMETRY SYSTEM

The system allows the roughness of a multitude of surfaces to be measured by an optical method that does not make any changes to the sample. With the operating base of a confocal microscope commonly used in different fields of science, it allows to create high-resolution 3D images quickly and automatically, as well as obtaining color images thanks to the use of three LEDs: Red, Green and Blue. With the available objectives, it is possible to measure from more macroscopic samples such as screws used as dental implants to be able to observe bacterial colonies composed of bacteria the size of a micron. This will make it possible to measure the roughness of any sample covering the range of roughness between a magnifying glass, which gives a more macroscopic view, and the atomic force microscope capable of measuring nanometric roughness (10 ^ -9 m). In addition, this equipment also works as an interferometer that allows to measure the roughness with greater precision of mirror polished samples in a simple way, obtaining images of higher resolution than any confocal technique.

Read More

Video-summary of the CIBER-BBN and NANBIOSIS 2020 Annual Conference

In 2020, the XIV CIBER-BBN Annual Conference took place for the first time in virtual format, which did not prevent the Bioengineering, Biomaterials and Nanomedicine groups of the CIBER from sharing the results and advances of their research as always. For the fourth year in a row one of sessions of the CIBER-BBN Conference was dedicated to the ICTS NANBIOSIS. Here is video summary of the main milestones and topics addressed this year.

Read More

Printed sensors, a low cost alternative for clinical detection

In today’s society there is a great interest in developing new technologies that allow low-cost mass manufacturing, also called “rapid prototyping” or “additive manufacturing”. Rapid prototyping includes technologies such as sterolithography, 3D printing, laser sintering or printed electronics, among others. All of these share digital design and manufacturing from the consecutive addition of layers, that is, techniques that allow creating almost any shape or geometric feature in a very fast time.
Printed electronics consists of printing inks on different types of substrates such as textiles, plastics, papers or films to make them “smart”. This technique is presented as an alternative to traditional silicon that is being implemented in sectors as varied as health and wellness, automotive and transport, professional sports, safety and protection, packaging, architecture and construction, and technical textiles. Printed electronics is one of the new technologies that will have a long history throughout the functional electronic device manufacturing space, with a wide range of applications, electronic designs, processes and materials, compared to conventional electronic and microelectronics based manufacturing technology in silicon. It is expected that in the next decade it will be part of everyday life, with products such as electronic skin, electronic tissues and organs or architectural elements that respond to external stimuli.
Among the many areas of interest of these technologies, one of them is the development of low-cost sensors for the medical or environmental area. For example, in these disciplines, it is essential to get devices that can be very economical or even single-use to promote sustainable environmental control and personalized medicine. Specifically with inkjet technology, researchers from NANBIOSIS Unit 8 Micro-Nano Technology Unit belonging to the Institute of Microelectronics of Barcelona (IMB-CNM, CSIC /and CIBER-BBN), have developed over the last few years multiple materials, inks, substrates and sensors for the development of electrochemical sensors in micrometric dimensions.

  • Inks: Most commercial inks are composed of a solvent that contains some material with insulating, conductive or semiconductor properties. As a general rule, an ink must be stable, with a particle size of several orders of magnitude smaller than the injector orifice, have a viscosity of less than 20 mPa s and a surface tension of less than 80 mN m-1. Although these values ​​may depend on the system in question. The final devices are obtained by selectively depositing in previously drawn areas, layer by layer, thin or thick structures on the substrates. They have worked with multiple commercial metallic inks such as gold, silver and platinum.
    Normally in an electrochemical system a noble material that is electrochemically stable is needed to be used in the working electrode and in the counter electrode, and for this gold or platinum are a good alternative. To make measurements with any electrochemical sensor, a reference electrode is essential since it is one that has a stable and constant potential over time and that allows us to reference our voltage value. We use the impression of an Ag / AgCl bilayer since it is one of the interfaces most used as a reference electrode. One of the main problems faced by miniaturization, however, is the rapid loss of the small volume of internal reference solution that these electrodes must have, which has a direct impact on their useful life and stability. For this, a polymeric membrane that can be printed was formulated, which allows the reference to have high performance compared to other commercial miniaturized reference electrodes (Ref1).
  • Substrates: a wide range of rigid, flexible, porous, plastic, fabric, etc. substrates can be used. However, the interaction of the ink with the substrate is crucial in determining the good quality of the printed pattern. For this reason, the properties of the inks are adapted for the different substrates with their own properties. For this reason, it is common practice to pretreat the substrate surface to improve hydrophobicity and adhesion issues mainly. It is common to use plastic substrates with a thickness of the order of microns that provide them with great flexibility and that are already specially treated to obtain excellent printing qualities. The deposition of uniform gold and silver conductive inks on porous substrates can be achieved by using a primer layer to seal the porosity of the membrane in specific and defined areas, with the aim of building a sensor device over the sealed area and leaving the rest of the intact substrate (Ref.2). With a paper substrate, alternatively we can print a silane ink, as a strategy that allows a monolayer of hydrophobic material to grow on the substrate and thus be able to obtain uniform lines of ink on its surface. (Ref.3)
  • Sensors developed: Dissolved oxygen (DO) (Ref.4) and pH (Ref.5) sensors have been developed using gold and platinum inks respectively, commercially available on plastic substrates. The inks have a specially designed formulation that allows their sintering at temperatures as low as 150 and 180 ° C for Au and Pt respectively. This is a key point in the development of low-cost sensors made on polymeric substrates or paper that cannot withstand high temperatures. These sensors integrate in a single platform all the basic elements for the registration of pH and DO, allowing measurements without any external electrode. DO is measured directly with a gold working electrode and pH sensors are achieved after electroplating an iridium oxide film on the platinum working electrode. In addition, this water-based platinum ink has another unique feature, it provides the electrode surface with high roughness, which promotes adhesion of the deposited sensor material, in this case iridium oxide. Long-term stability tests for more than 1 year demonstrate excellent stability of the mechanical sensor layer, and that it correlates perfectly with the different roughness of the printed platinum layer. Along the same lines and in relation to the development of inks, it has been possible to obtain a fully printed pH sensor based on a conductive polymer specially formulated to be printed by IJP . The measurements obtained with this ink have a good response in a wide pH range (pH 3 to 10) and the response in the physiological zone (pH 7-7.5) is well resolved, one of the main drawbacks of conductive polymers. We also present an IJP-printed electrochemical sensor for enzyme-free glucose analysis on flexible PEN substrate (Ref.6). In this case, CuO microparticles were used to modify the electrodes, and the detection of glucose was validated in concentrations that coincide with those of the tear fluid, which allows us to foresee applications in ocular diagnosis, where a painless control can be achieved and not invasive of diabetes by analyzing the glucose contained in tears.

(Ref.1): Moya A, Pol R, Martínez-Cuadrado A, Villa R, Gabriel G, Baeza M. Stable Full Inkjet-Printed Solid-State Ag/AgCl Reference Electrode. Analytical Chemistry 91 (2019) 15539-15546

(Ref.2): M. Ortega-Ribera; X. Guimerà; E. Sowade; M. Zea; X. Illa; E. Ramon; R. Villa; J. Gracia-Sancho; G. Gabriel. Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system. Lab on a Chip. 18 – 14, pp. 2023 – 2035. 2018

(Ref.3): All Inkjet Printing Sensor Device on Paper: for Immunosensors Applications M Zea, A Moya, I Abrao-Nemeir, J Gallardo-Gonzalez, N Zine, A Errachid, … 2019 20th International Conference on Solid-State Sensors, Actuators and 

(Ref.4): Moya A, Sowade E, del Campo FJ, Mitra KY, Ramon E, Villa R, Baumann RR, Gabriel G. All-inkjet-printed dissolved oxygen sensors on flexible plastic Organic Electronics 39 (2016) 168-176

(Ref.5): Zea M, Moya A, Fritsch M, Ramon E, Villa R, Gabriel G Enhanced performance stability of iridium oxide based pH sensors fabricated on rough inkjet-printed platinum ACS Applied Materials & Interfaces 11 (2019) 15160-15169

(Ref.6): Romeo A, Moya A, Leung TS, Gabriel G, Villa R, Sánchez S. Inkjet printed flexible non-enzymatic glucose sensor for tear fluid analysis Applied Materials Today 10 (2018) 133-141

Read More