+34 9340006100 -ext. 437807-info@nanbiosis.com


A Minimally Invasive Microsensor Specially Designed for Simultaneous Dissolved Oxygen and pH Biofilm Profiling

Ana Moya, Xavi Illa, Rosa Villa and Gemma Gabriel, researchers of the Biomedical Application’s Group (GAB) of CIBER-BBN and the Microelectronics Institute of Barcelona, which main interests are the design and fabrication of Micro and Nano Systems for Biomedical Applications, have recently published, in collaboration with other authors an article in the Special Issue Advanced Electrochemical Sensors and Environmental Monitoring

The authors thank in the Acknowledgements the participation of the ICTS NANBIOSIS U8 Micro– Nano Technology Unit of the CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) at the IMB -CNM (CSIC)

The work reports the development of a novel multi-analyte microsensor based on MEMS technologies for simultaneous monitoring of DO and pH. Results showed the capacity of microsensors to quantify concentration gradients of di erent species within biofilms. In addition, the possibility of integrating two microsensors, specially designed to obtain a seven-point profile in a single measurement, introduced in this paper for the first time, clearly simplifies the equipment and the procedure necessary to record concentration profiles within biofilms. Critical future prospects have been established


Xavier Guimerà , Ana Moya, Antonio David Dorado, Xavi Illa, Rosa Villa, David Gabriel, Xavier Gamisans and Gemma Gabriel. A Minimally Invasive Microsensor Specially Designed for Simultaneous Dissolved Oxygen and pH Biofilm Profiling Sensors 201919(21), 747; https://doi.org/10.3390/s19214747

Read More

NANBIOSIS Scientific Director, Jaume Veciana, coauthor of an article highlighted in Chemistry Views

Jaume Veciana, Scientific Director of NANBIOSIS is coauthor of an article chosen to be highlighted on the ChemistryViews newsletter: “Organic Free Radicals as Circularly Polarized Luminescence Emitters”, published in Angewandte Chemie International Edition, and is about the intrinsic chiral emission of enantiometric organic free radicals.

The short news about the paper is entitled “Circulary Polarized Light from Organic Radicals” is available here

Circularly polarized luminescence (CPL) can occur when a luminescent compound has a chiral structure. Organometallic structures are leading in CPL activity. However, purely organic CPL emitters are promising alternatives in several applications where low toxicity is important
(i.e., bioimaging).

Jaume Veciana (Institut de Ciéncia de Materials de Barcelona (ICMAB), Spain), Araceli G. Campaña (University of Granada, Spain) and colleagues have found a new approach for the optimization of organic emitters with intrinsic chirality. In particular, tris(2,4,6-trichlorophenyl)methyl (TTM) and perchlorotriphenylmethyl (PTM) radicals, which both have a chiral propeller-like shape, were used. In addition to their chirality, these materials are magnetically active. They are also easy to modify in order to optimize their properties.

The team separated the two racemic compounds into their enantiomers using chiral stationary phase high-performance liquid chromatography (HPLC). The CPL spectra of the four resulting fractions (examples pictured) were recorded and the researchers found highly efficient chiral emission for both pairs of enantiomers. According to the researchers, this is the first time results about the intrinsic chiral emission from enantiomeric organic free radicals have been reported. The work might be a starting point for the development of improved chiral organic radical emitters.

Reference article:Organic Free Radicals as Circularly Polarized Luminescence Emitters
Paula Mayorga Burrezo, Vicente G. Jiménez, Davide Blasi, Imma Ratera, Araceli G. Campaña, Jaume Veciana,
Angew. Chem. Int. Ed.2019.

Read More

Unit 16 of NANBIOSIS will expand its capabilities with cofinancing of FEDER funds

On October 25, the Monitoring Commission of the agreement signed on July 15 was established by the Ministry of Economy, Industry and Competitiveness and the University of Extremadura for the acquisition of new equipment that will expand the capabilities of Unit 16 of NANBIOSIS.

One of the 26 Units that constitute NANBIOSIS is Unit 16 “Unit of Surface Characterization and Calorimetry” of CIBER-BBN and the University of Extremadura. The application of this FEDER cofinancing will allow the expansion of the capabilities of this unit for the chemical, physicochemical, and topographic characterization of surfaces, improving the competences in mass spectrometry by time of flight of secondary ions (TOF-SIMS), photoelectron spectroscopy (XPS) and extending them to the profilometry goniometry and goniometry. The requested equipment will be located on the Badajoz campus of the University of Extremadura, where Unit 16 of NANBIOSIS is located.

The total budget of the project is € 1,380,000, 80% of which are co-financed with funds from the European Regional Development Fund (FEDER) corresponding to the Spanish Multi-Regional Operational Program 2014-2020, allocated to the General Secretariat for Coordination of Scientific Policy of the Ministry of Science, Innovation and Universities destined to finance projects and actions related to infrastructures included in the current ICTS Map. The remaining 20% ​​is contributed by the Junta de Extremadura.

Further information here

Read More

New inside backcober by researchers of NANBIOSIS U9

Researchers of NANBIOSIS U9 Synthesis of Nanoparticles Unit Ignacio Julian, José L. HuesoReyes Mallada and Jesús Santamaría, are co-authors of an article with inside backcover recently published by the scientific magazine Catalysis, Science and Tecnology.

The synthesis of the materials has been performed at the Platform of Production of Biomaterials and Nanoparticles of the NANBIOSIS ICTS, more specifically at the Nanoparticle Synthesis Unit 9 of the CIBER in BioEngineering, Biomaterials & Nanomedicine (CIBER-BBN)

Article: Polyoxometalates as alternative Mo precursors for methane dehydroaromatization on Mo/ZSM-5 and Mo/MCM-22 catalysts. Julián I, Hueso J.L, Lara N, Solé-Daurá A, Poblet J,M, Mitchell S.G, MalladaR, Santamaría J.Catal. Sci. Technol., 2019, 9, 5927
DOI: 10.1039/C9CY01490J 

Read More


During de dates Nov. 18 -30, 2019 will take place de course on line on Introduction to Research and Laboratory Techniques in Biociences, under the direction of NANBIOSIS U14 Cell Therapy Unit led by Javier García Casado Scientific Director of the Unit and Francisco M. Sánchez Margallo Scientific Director of CCMIJU and Deputy Scientific Director of NANBIOSIS.


Read More


The Nanobiotechnology for Diagnostics group (Nb4D) of CIBER-BBN and IQAC-CSIC, (coordinator of NANBIOSIS U2 Custom Antibody Service (CAbS)), led by Prof. Mª Pilar Marco, is organizing a workshop on “Ethical aspects of research” netx 18th November 2019, at the Institute for Advanced Chemistry of Catalonia (IQAC-CSIC). 

There will be three sessions given by experts from this topic area.

  • ANIMAL TESTING by Dr. Lluís Montoliu

Certificate of Attendance will be issued for each participant.

This workshop is FREE but has LIMITED SPACE. To  register, fill in the form by 10th November 2019https://bit.ly/2VI5W3j

Venue: Salón de Actos, CID-CSIC C/Jordi Girona 18-36. Barcelona. Monday, November 18, 2019, 9:30 h

Read More

NANBIOSIS U1 PPP will take a critical role in one of the projects selected by La Marató TV3 to fight against cancer

Selectively humanized nanomedicines aimed at killing CXCR4 + tumor cells for the treatment of acute myeloid leukemia”  is one of the Project awarded by La Marató TV3 Foundation and is participated by Dr. Antonio Villaverde, Estrategic of NANBIOSIS U1 Protein Production Platform (PPP)

The main objective of the project is the design and validation of humanized protein nanoparticles for the targeted delivery of antitumoral drugs for the treatment of acute myeloid leukemia. This will be done by the generation of protein-based nanoconjugates that will be targeted to the cytokine receptor CXCR4, overexpressed in this human neoplasia. The drugs will consist in a protein part, that will ofer nanoscale size, stability and CXCR4-targeting, and a small molecular weight chemical that will perform the cytotoxic effect over tumoral cells. The Protein Production Platform (U1 of NANBIOSIS), will have a critical role in the design and production of the protein amounts required for the in vivo experiments, that will be performed at the Institut de Recerca of Sant Pau Hospital.

In the 2018 La Marató TV3 edition, dedicated to cancer, 192 projects were presented, which were evaluated by 149 international scientists specialized in this field based on their quality, methodology and relevance. The management of the evaluation was carried out by the Health and Quality Assessment Agency of Catalonia, from the Department of Health. In accordance with the proposal of the Scientific Advisory Commission of the La Marató de TV3 Foundation, the Board agreed to distribute 13,149,870.76€ among the 43 scientific research projects.

The Project “Selectively humanized nanomedicines aimed at killing CXCR4 + tumor cells for the treatment of acute myeloid leukemia“. Will be developed by the research groups led by:

  • Dr. Jordi Sierra GilHospital de la Santa Creu i Sant Pau – IRHSCSP Institut de Recerca Hospital de la Santa Creu i Sant Pau
  • Dr. Antonio Villaverde CorralesFacultat de Medicina – UAB Universitat Autònoma de Barcelona
  • Dra. Lourdes Farré Vallvé Institut Català d’Oncologia – IDIBELL Institut d’Investigació Biomèdica de Bellvitge

Financing: 399.178,75 €

Read More

Killing cancer from starvation or by toxicity with Trojan horses.

Jesús Santamaría, who leads the NFP research group of CIBER-BBN and the Institute of Nanoscience of Aragon (INA), at the University of Zaragoza, in an interview on October 29 to Aragon TV, talks about the problems in the fight against cancer and explains in a very didactic way, the solutions that are being approached from his research group, in collaboration with other groups. It would consists, basically, in reducing the tumor from inside the tumor cells. Prof. Santamaria has been granted funding twice from the European Research Council (ERC) Advanced Grant program for catalysis-related projects, the last one with two and half million euros to continue their investigation on the use of catalysis in oncology. The synthesis of nanoparticles and the characterization of these experiments is carried out in NANBIOSIS U9 Synthesis of Nanoparticles Unit directed by Jesús Santamaría and Gema Martínez.

The Professor of chemical engineering at the University of Zaragoza, Jesús Santamaría, explains that “killing cancer cells is not too difficult, compared to other cells, but what is difficult is to hit the target of delivering the drug precisely to these cells and not to healty cells.  Because of this, the treatment is often limited by the amount of chemo that the body can tolerate since therapies have very strong side effects”

“Through nanotechnology – Dr. Santamaría continues – we make several approaches: one is the introduction of treatments in intelligent nanoparticles aimed at the tumor, they are injected into the blood and are expected to reach the tumor; and the other is the one proposed by Jesús Santamaría’s team, to fight the tumor from inside the tumor cells by introducing a catalyst that causes certain reactions to occur and in this case, to generate a toxic substance. Thus, if it is done well, the chemotherapeutic would be located inside the tumor and more amount of drug could be applied more efficiently and with much less side effects to the patient as it is not distributed throughout the body; It would mean a chemo factory inside the tumor thanks to the catalyst, -says Santamaría – This has several problems: the first is th arrival of the catalyst to the tumor and not to another site, but, what you we are transporting through the body is not a drug but a catalyst that is biodegradable”

Once the catalyst is in the tumor, it can behave in two different ways depending on the type of catalyst, one removes nutrients from the tumor, for example glucose, killing the tumor from starvation, and the other kills the tumor by toxicity, as Prof. Santamaría explains: “a prodrug is introduced, which is a toxic drug with a group that inactivates it till the catalyst removes the inactivator, so that an inert molecule is transformed into a toxic one inside the tumor, in this way, the toxicity factory is inside the tumor and it will be possible to continue generating toxicity while we give it the prodrug”.

For the catalyst to reach cancer cells, researchers follow two types of approaches. Nanotechnology sometimes uses functionalized nanoparticles with antibodies that recognize parts of specific molecules that are expressed in tumors, this technique has its limitations and it is not working so well as expected. The other way  is the strategy of Trojan horses. What things can we use as Trojan horses? –asks Santamaría- . Two approaches have been tested: one is the dendritic or mesenchymal stem cells which have tropism towards the tumors . These cells are first loaded with therapeutic nanoparticles, then injected into the bloodstream, and use their selective tropism takes to reach the tumor. The other possibility of Trojan horse that researchers have shown in cell cultures is to use, not cells, but something that cells emit called exosomes that are vesicles sent out by cells to communicate with each other, that have a piece of membrane capable to recognize the cell where they come from. Researchers have found a way to collect exosomes from tumor cells and introduce into them, without touching the membrane, a catalyst verifying that exosomes recognize the cells where they come from, look for them and join them.

You can follow the interview by Jesús Santamaría to Aragón Televisión in Spanish in this link http://alacarta.aragontelevision.es/informativos/buenos-dias-aragon-29102019-0800 aprox. min 33-44.

For further information:

Article of reference: Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis María Sancho-Albero, Belén Rubio-Ruiz, Ana M. Pérez-López, Víctor Sebastián, Pilar Martín-Duque, Manuel Arruebo, Jesús Santamaría and Asier Unciti-Broceta. Nature Catalysis 2019 DOI https://doi.org/10.1038/s41929-019-0333-4

Read More

“Minimal invasion, maximum innovation”

“Minimal invasion, maximum innovation” is a repot by Spanish TV about the Minimal Invasion Surgery Center, Jesús Usón, partner of NANBIOSIS.

“The unique capabilities of the Center from its animal farm to its surgical infrastructure allow the evaluation and validation of new technology such as medical devices, new biomaterials, new pharmacological therapies, before being used in human patients” explains Francisco Miguel Sanchez Margallo, Sciencitific Director of the Center and Deputy Scientific Director of NANBIOSIS- ICTS.

Verónica Crisóstomo, Scientific Director of NANBIOSIS Unit 24 of Medical imaging explains a current project that studies how to reduce the damage caused by a heart attack with stem cell-based treatment

The report can be seen heer:


Read More

Best Poster award at the congress of Spanish Society of Nephrology

Researchers of Unit 17 of NANBIOSIS Confocal Microscopy Service and the GITBIT-UAH group (CIBER-BBN, Univerty of Alcalá de Henares), have been awarded with the PRIZE FOR THE BEST POSTER COMMUNICATION by the Spanish Society of Nephrology (S.E.N.) and Senefro Foundation.

“The ILK deletion prevents extravasation of monocytic line leukocytes induced by the accumulation of uremic toxins during chronic kidney disease” authored by CAMPILLO DE BLAS, L BOHORQUEZ MAGRO, D GARCÍA AYUSO, B GARCÍA CARRASCO, M GRIERA, S DE FRUTOS, M RODRÍGUEZ-PUYOL, D RODRÍGUEZ-PUYOL, L CALLEROS BASILIO.

Read More