+34 620 10 75 37info@nanbiosis.com

News U8

The revolutionary path of research in NANBIOSIS and advice on Woman’s Day 2024

Our interview series delve into the journeys of 7 female researchers, their challenges, and the call for gender equality in science, inspiring the next generation.

March 8th 2024, NANBIOSIS (Spain)

Kicking off on 11F “International Day of Women and Girls in Science” 2024, and spanning all the way until Woman’s Day 2024, our interview series has aimed to highlight the life, career and opinions of some of the brilliant minds within our network. Today is time to wrap it up, and for this reason we present you a summary of each of them and a chance to take a deeper look.

In these series we delved into the remarkable journeys, research endeavors, and challenges faced by these exceptional women in their pursuit of scientific excellence. From unraveling the mysteries of nanotechnology to pioneering advancements in biosciences, each researcher’s story resonates with perseverance, resilience, and a fervent commitment to breaking barriers. With no doubt their collective message resonates loudly: a call to inspire and empower the next generation of aspiring researchers, regardless of gender, to embark on their own transformative journeys in the world of science and innovation, as well as speaking out on the issues that female researchers still encounter today.

Anna Aviñó speaks about her journey as a researcher and her captivating oligonucleotides.

“Oligonucleotides (…) are recently being approved as new advanced gene therapies for many diseases, including rare and cardiovascular diseases.”

—Dr. Anna Aviñó, scientific coordinator of Unit 29.

Our leading chemist, specialized in nucleic acid chemistry, was the first interview published in these series. She offered us insights into her current projects focused on synthetic and structural studies of oligonucleotides. With a deep understanding of their applications in gene therapies and biosensors, Dr. Aviñó highlighted her contributions to the field and addressed challenges faced as a woman scientist.

Through her expertise and dedication, she advocates for gender equality in science, emphasizing the importance of unbiased education and empowering young women to pursue careers in research.

You can read the full interview here.

Dr. Martín tells us about her innovations in cancer treatment with nanoparticles.

“There are challenging moments during a scientific career (…), but in the end, persistence pays off.”

—Dr. Ana Martín, collaborator scientist in Unit 9.

Ana has a multifaceted background spanning Veterinary Medicine, Biochemistry, and a Ph.D. And in this second part of our series she welcomed us into a world of scientific inquiry and innovation. In this interview, Ana shared her pioneering work in cancer research, utilizing nanoparticles for anti-tumor treatments. Ana also reflected on gender equality in science, the challenges of balancing motherhood with a scientific career, and her aspirations for a more inclusive scientific community.

You can read the full interview here.

Prof. Peña gave us her insightful point of view in overcoming challenges, embracing passion, and cultivating collaborative success towards career estabilization.

“The most important thing in your professional career is to dedicate yourself to something you love (…) that’s incredibly important from a professional point of view.”

—Prof. Estefanía Peña, Scientific Coordinator of Unit 13.

In a captivating interview, Professor Estefanía Peña shared her insights on overcoming challenges, nurturing passion, and fostering collaborative success in achieving career stability. Amidst the bustling R&D environment, Professor Peña’s laboratory serves as a beacon of innovation and determination. With enthusiasm and warmth, she discussed her journey in computational modeling and biomedical engineering, highlighting her experiences, hurdles, and victories. Professor Peña’s story resonates as a testament to perseverance and dedication, offering valuable advice to aspiring researchers on following their passions.

You can read the full interview here.

Our expert in nanocarriers talks about her journey from biotechnology to cancer therapy, an example of passion and perseverance in science.

“I am fortunate to be able to devote myself to something I am passionate about. Research is something I enjoy every day.”

—Dr. María Sancho, Researcher at Unit 9.

Dr. Sancho, our expert in nanocarriers and cancer therapy, shared with us her inspiring journey from biotechnology to groundbreaking research. Set in Zaragoza, Spain, the interview highlighted Maria’s passion and perseverance in pursuing scientific excellence. With warmth and enthusiasm, she discussed her innovative work in developing nanocarriers for targeted drug delivery in cancer treatment. Maria’s story serves as a beacon of inspiration for aspiring scientists, showcasing the transformative power of dedication and curiosity in the pursuit of scientific advancement.

You can read the full interview here.

Dr. Vílchez, our esteemed colloidal chemistry researcher, discusses her focus on water-in-water emulsions and microcoacervates. She highlights gender biases in science and advocates for inclusivity and recognition of women’s contributions.

“I would advise (young women) to pursue their dreams, to show others what they are capable of, and not to let themselves be underestimated.”

—Dr. Susana Vílchez, technical and quality manager of Unit 12.

Dr. Vílchez offered a profound insight into her research endeavors and career trajectory. Specializing in the characterization of colloidal systems such as micelles, vesicles, emulsions, and more, her current focus lies on the intriguing realm of water-in-water emulsions and the formation of microcoacervates, serving as a model for membraneless organelles (MLO) by introducing DNA into these emulsions. During the interview, Dr. Vílchez also shed light on the gender biases prevalent in her field and offered invaluable perspectives on fostering gender equality in science. Through her experiences and unwavering dedication, she inspires young women to pursue their scientific aspirations while advocating for broader inclusivity and recognition of women’s contributions in shaping the scientific landscape.

You can read the full interview here.

Dr. Mincholé discusses cardiac risk assessment, gender challenges in science, and the transformative potential of Digital Twins in healthcare research.

“(I) design and work on a research line that combines computational models with cardiac signals and images. This was done with the aim of stratifying arrhythmic risk and understanding its mechanisms.”

—Dr. Ana Mincholé, researcher at Unit 27.

In this part 6 of our interview series, Dr. Ana Mincholé discussed her groundbreaking work in cardiac risk assessment, gender challenges in science, and the transformative potential of Digital Twins in healthcare research. Dr. Mincholé’s insights offered a glimpse into her innovative approach to integrating computational models with clinical data to advance cardiac care. Her passion for science and dedication to promoting diversity in STEM shine through, underscoring the invaluable contributions of women in the field.

You can read the full interview here.

As a bosus, we have recently published the last of our interviews in our YouTube channel.

In this part VII, we had the pleasure to interview Dr. Eli Prats, a brilliant researches from Unit 8 and a fantastic science communicator. Watch it full here:

About NANBIOSIS:

The goal of NANBIOSIS is to provide comprehensive and integrated advanced solutions for companies and research institutions in biomedical applications. All of this is done through a single-entry point, involving the design and production of biomaterials, nanomaterials, and their nanoconjugates. This includes their characterization from physical-chemical, functional, toxicological, and biological perspectives (preclinical validation).

In order to access our Cutting-Edge Biomedical Solutions, place your request here.

NANBIOSIS has worked with pharmaceutical companies of all sizes in the areas of drug delivery, biomaterials and regenerative medicine. Here are a few of them:

Read More

ICTS participation in the First guide to facilitate the sustainable design of printed electronic devices

Scientists of NANBIOSIS Unit 8 have participated in the publication of a a comprehensive experimental review of inks, paper substrates, and printing techniques. The objective is to offer the scientific community a guide with data to facilitate the design of printed devices and manufacture them in an ecological way.

Gemma Gabriel, researcher of Biomedical Applications Group at IMB-CNM and last author of the article, highlights the applications of the results in health monitoring, with non-invasive techniques such as glucose detection, although there are many applications where printed electronic materials and technologies are very useful. Among them, environmental monitoring, (in air and water quality control systems or detection of pollutants), in wearable electronics, such as flexible and lightweight devices that can be integrated into clothing, accessories or directly on the skin; energy harvesting and storage such as lightweight and flexible energy harvesting devices such as solar cells and thermoelectric generators; and the “Internet of Things (IoT)” with low-cost sensors that are easy to implement in smart home systems and industrial automation.

Implication of Unique Scientific and Tecnical Research Infraestructures
For the research, the team has used the Unit 8 of the ICTS NANBIOSIS of the CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) at the IMB-CNM-CSIC and the MICRONANOFABS network, the ICTS of clean rooms of micro and nanofabrication of which the IMB-CNM-CSIC is a part.

The research has been carried out within the ECOTRONIC projects, funded by the Ministry of Science and Innovation in the 2018 Innovation Challenges call, and CEL-SENS, within the framework of the Strategic Projects Oriented to the Ecological Transition and the Digital Transition financed by the Ministry with funds from the European Union ‘NextGenerationEU’/Plan for Recovery, Transformation and Resilience.

Read More

“CIBER is collaboration”

CIBER Centro de Investigación Biomédica en Red (Consortium for Biomedical Research Network), one of the ICTS NANBIOSIS nodes to which 18 of its 26 units belong, presents the new institutional video “CIBER is Collaboration”

This video puts a face to the scientific activity of CIBER researchers and highlights CIBER capacity for synergy. CIBER researchers speak about the main research lines of its 13 subject areas and highlights the collaboration between its more than 500 groups and more than 6,000 researchers belonging to more than 100 institutions of different natures that make up CIBER: hospitals, research centers, universities, foundations, etc.

The ICTS NANBIOSIS, created between CIBER and the Jesús Usón Minimally Invasive Surgery Center in 2014, (to which Bionand joined in 2019 as a third node), is a clear example of CIBER’s capacity for synergy, bringing together 3 nodes and 26 units or platforms research to provide cutting-edge solutions to the problems faced by researchers in bio and nanomedicine.

Likewise, the video highlights some of the most relevant CIBER projects as well as the importance of technology transfer and scientific dissemination.

The researcher Elisabeth Prats is one of the “faces” in the video. She is part of the NANBIOSIS Unit 8 Micro– Nano Technology Unit at IMB-CNM CSIC

Read More

“The almighty graphene”, a podcast by Elisabet Prats

Elisabet Prats Alfonso, a researcher in the team coordinating NANBIOSIS U8 Micro– Nano Technology Unit explains in a podcast her most recent research based on the functionalization of chemical and biochemical sensor platforms as well as the characterization of materials such as graphene for both neuronal recording and biomarker detection. Her work is part of the Graphene Flagship project in which she collaborates with relevant European groups.

Eli Prat as a researcher Ph.D. in Chemistry and also dedicated to dissemination is a great exemple for the NANBIOSIS aim to encourage STEAM scientific vocations especially among girls.

In addition, she is the author, together with Helena González and Oriol Marimón, of the book Elementum and the great robbery of Nurú” (La Esfera de los Libros, 2020), a scientific novel aimed at children .

Read More

Researchers of NANBIOSIS U8 highlighted in the World Health Day

In the Picture: Gemma Gabriel and Rosa Villa

World Health Day is celebrated every year on 7 April (on the aniversary of the World Health Organization constitution) to raise awareness about the ongoing health issues that concern people across the world.

This year, Xarctec Salud has called the attention on patients with brain diseases and spinal cord injuries and has highlighted the GAB Lab. Biomedical Applications Group of the IMB-CNM-CSIC and CIBER-BBN, the group, led by Rosa Villa, coordinates unit 8 ICTS NANBIOSIS of Micro-nano Technology Unit.

https://youtu.be/wiA5oFc6Q48

The Xartec Salut is a network, led by CREB UPC, made up of 47 research groups that belong to 17 different institutions. It aims to be a catalyst for R+D+I in the field of HealthTech by Fostering the exchange of knowledge between research groups, institutions, hospitals and companies, promoting company creation and new career opportunities and offering more efficient instruments for technology transfer.

Read More

New graphene-based neural probes improve detection of epileptic brain signals

A study published in Nature Nanotechnology shows that flexible brain probes made of graphene micro-transistors can be used to record pathological brain signals associated with epilepsy with excellent fidelity and high spatial resolution. This research was led by the Institute of Microelectronics of Barcelona (IMB-CNM-CSIC), the Catalan Institute of Nanoscience and Nanotechnology (ICN2) and the University College London Queen Square Institute of Neurology (UK).

The ability to record and map the full range of brain signals using electrophysiological probes will greatly advance our understanding of brain diseases and aid the clinical management of patients with diverse neurological disorders. However, current technologies are limited in their ability to accurately obtain with high spatial fidelity ultraslow brain signals. In a paper published today in Nature Nanotechnology, an international team of researchers report a flexible neural probe made of graphene-based field-effect transistors capable of recording the full spectrum of brain signals, including infraslow; and demonstrate the ability of these devices to detect with high fidelity electrographic signatures of the epileptic brain.

Epilepsy is the most common serious brain disorder worldwide, with up to 30% of people unable to control their seizures using traditional anti-epileptic drugs. For drug-refractory patients, epilepsy surgery may be a viable option. Surgical removal of the area of the brain where the seizures first start can result in seizure freedom; however, the success of surgery relies on accurately identifying the seizure onset zone (SOZ).  Epileptic signals span over a wide range of frequencies –much larger than the band monitored in conventional EEG.  Electrographic biomarkers of a SOZ include very fast oscillations as well as infraslow activity and direct-current (DC) shifts. The latter, in particular, can provide very relevant information associated with seizure onset but are seldom used due to the poor performance of current probes to record these types of slow brain signals. Application of this technology will allow researchers to investigate the role infraslow oscillations play in promoting susceptibility windows for the transition to seizure, as well as improving detection of clinically relevant electrophysiological biomarkers associated with epilepsy.

The graphene depth neural probe (gDNP) developed by the authors of this research consists of a millimetre-long linear array of micro-transistors imbedded in a micrometre-thin polymeric flexible substrate. The flexible gDNP devices were chronically implanted in small animal models of seizures and epilepsy. The implanted devices provided outstanding spatial resolution and very rich wide bandwidth recording of epileptic brain signals over weeks. In addition, extensive chronic biocompatibility tests confirmed no significant tissue damage and neuro-inflammation, attributed to the biocompatibility of the used materials, including graphene, and the flexible nature of the gDNP device.

Future clinical translation of this technology offers the possibility to identify and confine much more precisely the zones of the brain responsible for seizure onset before surgery, leading to less extensive resections and better outcomes. Ultimately, this technology can also be applied to improve our understanding of other neurological diseases associated with ultraslow brain signals, such as traumatic brain injury, stroke and migraine.

“The development of this graphene-based neurotechnology was possible thanks to the microfabrication capacities of the Micro and Nanofabrication Clean Room”, explains Anton Guimerà about the Unique Science and Technology Infrastructure (ICTS) recognized by the Ministry of Science and Innovation.

This study was led by ICREA Prof. Jose A Garrido, head of the ICN2 Advanced Electronic Materials and Devices Group, Dr Anton Guimerà-Brunet, from the Institute of Microelectronics of Barcelona (IMB-CNM-CSIC) and CIBER-BBN and researcher of NANBIOSIS Unit 8 Micro-nanotechnology unit, and Dr Rob Wykes, from the University College London Queen Square Institute of Neurology (UK) & the Nanomedicine Lab of the University of Manchester (UK). First author of the paper is Dr Andrea Bonaccini Calia, a former member of Prof. Garrido’s group. This study was conducted in the frame of the EU project Graphene Flagship. It benefited from multidisciplinary collaborations and received valuable contributions from researchers at the Nanomedicine Lab of the University of Manchester (UK), the Universitat Autònoma de Barcelona (Spain) and g.tec medical engineering GmbH (Austria).

The authors acknoledged the participation of NANBIOSIS Unit 8 Micro-nanotechnology unit, (from CIBER-BBN at IMB-CNM-CSIC) led by Dr. Rosa Villa, in the research in the article of reference.

Reference article:

Andrea Bonaccini Calia, Eduard Masvidal-Codina, Trevor M. Smith, Nathan Schäfer, Daman Rathore, Elisa Rodríguez-Lucas, Xavi Illa, Jose M. De la Cruz, Elena Del Corro, Elisabet Prats-Alfonso, Damià Viana, Jessica Bousquet, Clement Hébert, Javier Martínez-Aguilar, Justin R. Sperling, Matthew Drummond, Arnab Halder, Abbie Dodd, Katharine Barr, Sinead Savage, Jordina Fornell, Jordi Sort, Christoph Guger, Rosa Villa, Kostas Kostarelos, Rob Wykes, Anton Guimerà-Brunet, and Jose A. Garrido, Full bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene micro-transistor depth neural probes. Nature Nanotechnology, 2021. https://www.nature.com/articles/s41565-021-01041-9

Source of information: IMB-CNM-CSIC

Read More

The suitability of flexible graphene depth neuralprobes for in vivo electrophysiology research

  • A study published in “Nature Nanotechnology” shows that flexible brain probes made of graphene micro-transistors can be used to record pathological brain signals associated with epilepsy with excellent fidelity and high spatial resolution.
  • This research was led by the Catalan Institute of Nanoscience and Nanotechnology (ICN2), the Institute of Microelectronics of Barcelona (IMB-CNM-CSIC) and the University College London Queen Square Institute of Neurology (UK).

Barcelona, Wednesday 22 December 2021. The ability to record and map the full range of brain signals using electrophysiological probes will greatly advance our understanding of brain diseases and aid the clinical management of patients with diverse neurological disorders. However, current technologies are limited in their ability to accurately obtain with high spatial fidelity ultraslow brain signals. In a paper published today in Nature Nanotechnology, an international team of researchers report a flexible neural probe made of graphene-based field-effect transistors capable of recording the full spectrum of brain signals, including infraslow; and demonstrate the ability of these devices to detect with high fidelity electrographic signatures of the epileptic brain.

Epilepsy is the most common serious brain disorder worldwide, with up to 30% of people unable to control their seizures using traditional anti-epileptic drugs. For drug-refractory patients, epilepsy surgery may be a viable option. Surgical removal of the area of the brain where the seizures first start can result in seizure freedom; however, the success of surgery relies on accurately identifying the seizure onset zone (SOZ).  Epileptic signals span over a wide range of frequencies –much larger than the band monitored in conventional EEG.  Electrographic biomarkers of a SOZ include very fast oscillations as well as infraslow activity and direct-current (DC) shifts. The latter, in particular, can provide very relevant information associated with seizure onset but are seldom used due to the poor performance of current probes to record these types of slow brain signals. Application of this technology will allow researchers to investigate the role infraslow oscillations play in promoting susceptibility windows for the transition to seizure, as well as improving detection of clinically relevant electrophysiological biomarkers associated with epilepsy.

The graphene depth neural probe (gDNP) developed by the authors of this research consists of a millimetre-long linear array of micro-transistors imbedded in a micrometre-thin polymeric flexible substrate. The flexible gDNP devices were chronically implanted in small animal models of seizures and epilepsy. The implanted devices provided outstanding spatial resolution and very rich wide bandwidth recording of epileptic brain signals over weeks. In addition, extensive chronic biocompatibility tests confirmed no significant tissue damage and neuro-inflammation, attributed to the biocompatibility of the used materials, including graphene, and the flexible nature of the gDNP device.

Future clinical translation of this technology offers the possibility to identify and confine much more precisely the zones of the brain responsible for seizure onset before surgery, leading to less extensive resections and better outcomes. Ultimately, this technology can also be applied to improve our understanding of other neurological diseases associated with ultraslow brain signals, such as traumatic brain injury, stroke and migraine.

This study was led by ICREA Prof. Jose A Garrido, head of the ICN2 Advanced Electronic Materials and Devices Group, Dr Anton Guimerà-Brunet, from the Institute of Microelectronics of Barcelona (IMB-CNM-CSIC) & CIBER-BBN, and Dr Rob Wykes, from the University College London Queen Square Institute of Neurology (UK) & the Nanomedicine Lab of the University of Manchester (UK). First author of the paper is Dr Andrea Bonaccini Calia, a former member of Prof. Garrido’s group. This study was conducted in the frame of the EU project Graphene Flagship. It benefited from multidisciplinary collaborations and received valuable contributions from researchers at the Nanomedicine Lab of the University of Manchester (UK), the Universitat Autònoma de Barcelona (Spain), the CIBER-BBN with the participation of its ICTS NANBIOSIS and g.tec medical engineering GmbH (Austria).

NANBIOSIS U8. Micro – Nano Technology Unit has been used for the deposit of thin layers (Polyimide) for the manufacture of flexible devices (U8-S05) and for the growth and transfer of graphene (U8-S02) in flexible device disks.

Related animation

Reference article:

Andrea Bonaccini Calia, Eduard Masvidal-Codina, Trevor M. Smith, Nathan Schäfer, Daman Rathore, Elisa Rodríguez-Lucas, Xavi Illa, Jose M. De la Cruz, Elena Del Corro, Elisabet Prats-Alfonso, Damià Viana, Jessica Bousquet, Clement Hébert, Javier Martínez-Aguilar, Justin R. Sperling, Matthew Drummond, Arnab Halder, Abbie Dodd, Katharine Barr, Sinead Savage, Jordina Fornell, Jordi Sort, Christoph Guger, Rosa Villa, Kostas Kostarelos, Rob Wykes, Anton Guimerà-Brunet, and Jose A. Garrido, Full bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene micro-transistor depth neural probes. Nature Nanotechnology, 2021. DOI: https://dx.doi.org/10.1038/s41565-021-01041-9

For more information:

Institut Català de Nanociència i Nanotecnologia (ICN2)
Marketing and Communication Department
Àlex Argemí, Head of Marketing and Communication
alex.argemi@icn2.cat; +34 635 861 543


Read More

Inkjet printing technology is driving innovation of sensors for point-of-care devices

Miguel Zea, researcher at GAB Group –  Nanbiosis U8 Micro– Nano Technology Unit  will defend hir PhD thesis on Friday 23 of July, at 11 am, at the Graus Room of the Faculty of Sciences and Biosciences of the UAB about “Inkjet printing technology is driving the innovation of sensors for point-of-care devices”

Thesis directors: Gemma Gabriel and Eloi Ramon

Further information and registration for the event, onñine, here

Abstract

The ‘Inkjet printing’ technology is called to be the next generation of flexible electronics capable of performing functions that were only accessible with state-of-the-art microfabrication technologies. This is due, in part, to the versatility of digital, non-contact patterning techniques but also to the substantial investment in research and development for inkjet printing of functional materials in recent years. Inkjet printing is an additive manufacturing technology based on the contact-less deposition of micro-droplets of a functional material with micrometer precision on the desired substrate area, through a digital design. Moreover, inkjet printing is capable of modifying the printing pattern in real time. Consequently, design changes can be introduced without any additional costs, allowing to create personalized designs with unique features. Nowadays, industrial inkjet printing has reached high standards of flexible, robust, and reliable performances.

The consensus is that inkjet printing will facilitate the production of flexible electronics in a cost-effective, on circular-economy, and reducing waste manner, enabling the development of currently unavailable wearable and disposable devices. This is the point at which Point-of-Care testing devices (PoCT) enter in the equation due to their importance in medical trails. These devices are defined as medical diagnostic testing at or near the patient. PoCT devices rely on a fast and accurate measurement based on sensors that provide the physician with a set of important data to make a diagnosis. However, major limitations of state-of-the-art PoCT devices include cost, disposability, biodegradability, and reliability. Inkjet printing technology offers solutions to address these problems where its great promises are low-cost, non-contact, rapid prototyping, material varieties, and wide range of substrates. Moreover, in the last 15 years, this technology has already shown its potential in the fabrication of reliable and quantitative sensors which form the essential components of PoCT devices. However, our understanding of the technology and its capabilities are still in a promising or potential stage, and further expertise needs to be acquired to facilitate the development of complete fully printed PoCT devices.

Identifying these problems and possible solutions, this thesis focuses on showing the potential of inkjet printing to develop sensors on flexible plastic substrates and porous paper, challenging technology to its current limit. The first part addresses the formulation, printing, and characterization of new functional inks that allow us to obtain new conductive inks to be used in the area of sensing analytes of interest. On flexible plastic, two potentiometric pH sensors have been developed. The first shows the importance of the intrinsic roughness property of a new platinum ink based on nanoparticles to provide mechanical stability to iridium oxide, a pH-sensitive material, grown electrochemically on it. For this purpose, a pH sensor was developed using the new Pt ink and the stability over a year of this iridium oxide layer was studied, which showed a clear improvement in its performance. The second pH sensor goes one step further and is, to date, the first pH sensor entirely fabricated by inkjet printing. To meet this objective, a new polymeric ink was formulated composed of a mixture of polypyrrole and pH-sensitive polyaniline. This ink was printed on a previously printed gold microelectrode and, to finally obtain a fully printed pH sensor, the fabrication was completed with a printed silver/silver chloride pseudo-reference electrode. The second part addresses the challenge of printing a sensor on a more eco-sustainable substrate such as paper, an important factor for disposable PoCs. On any paper substrate, the difficulty in printing is greater due to the porosity, delicacy, and hydrophilicity of this material. In a first work, the challenge of printing conductive functional inks such as gold or silver, and dielectric inks such as SU8 on the substrate in an efficient and easy-to-reproduce way to obtain an electrochemical sensor is addressed. The printing of a new hydrophobic ink that allows to selectively block the area of the paper where the printing of the conductive inks that make up the electrochemical sensor will be required is proposed and studied. Finally, in a second work, a cortisol immunosensor was implemented on these sensors printed on a paper substrate and its response was characterized and compared with other reported sensors, demonstrating the good performance of this technology in the detection of biological target molecules in biological samples.

Read More

Collaboration in the CSIC White Paper “New Challenges in Biomedicine and Health”

The Spanish National Research Council (CSIC) is publishing the White Papers of the 14 strategic themes established on the basis of their scientific impact and social importance. The pen access to the White Paper of the fifth Challenge, Brain, Mind & Behaviour, is now avaailable. The book is the result of the “CSIC Scientific Challenges: Towards 2030”, in which the institution tackles the main issues and priorities for the future. This book is coordinated by Jesús Marco de Lucas and M. Victoria Moreno-Arribas.

Drs. Rosa Villa and Anton Guimera (Biomedical Applications Group, GAB and NANBIOSIS U8 Micro– Nano Technology Unit from CIBER-BBN and IMB-CNM-CSIC) collaborate in the secoond topic of the book: “From genes and circuits to behaviours” and  Rosa Villa also has collaborated on of the eighth topic, “Brain and spinal cord damaged and rehabilitation“.

Abstract:

The last decade of the 20th century, officially designated as the Decade of the Brain, brought forth significant advances in our understanding of the biological basis that underlie brain function. Despite this notable progress, neurological and psychiatric disorders currently affect almost a third of the population, a situation that derives from our still uncomplete knowledge of basic principles ruling brain development and function. Today, we are also facing a new era of technological advances that affect our lives in profound ways and we are bound to recast our relationship with our brains. In fact, there is the prevailing view that we are on the verge of new discoveries that will challenge our concepts for self-identity and free will, the privacy of our thoughts, the origins of social behavior or the inner workings of a diseased brain. To accelerate the pace of discoveries in Neurosciences able to prevent and treat mental affections and contribute to reshape the landscapes of other fields, from psychology to economics, education and the law, we need seamless flow of information between neurobiology and other areas of science that provide different but complementary perspectives and research expertise. Given the multidisciplinary wealth of the CSIC and the privileged position of Spanish neuroscience, we are in an optimal position to make a qualitative leap in understanding the mechanisms that control brain activity and be able to turn it into useful knowledge for building a healthier, more responsible society.

CSIC White Papers

What are the major scientific challenges of the first half of the 21st century? Can we establish the priorities for the future? How should the scientific community tackle them? This book presents the reflections of the Spanish National Research Council (CSIC) on 14 strategic themes established on the basis of their scientific impact and social importance.

Read More

Collaboration in the CSIC White Paper “New Challenges in Biomedicine and Health”

The Spanish National Research Council (CSIC) is publishing the White Papers of the 14 strategic themes established on the basis of their scientific impact and social importance. The pen access to the White Paper of the fourth Challenge, New Challenges in Biomedicine and Health, is now avaailable. The book is the result of the “CSIC Scientific Challenges: Towards 2030”, in which the institution tackles the main issues and priorities for the future. This book is coordinated by Mario Delgado (Instituto de Parasitología y Biomedicina “López – Neyra”, Granada) and María Moros (Instituto de Nanociencia y Materiales de Aragón, Zaragoza).

Drs. Rosa Villa (Biomedical Applications Group, GAB and NANBIOSIS U8 Micro– Nano Technology Unit from CIBER-BBN and IMB-CNM-CSIC) collaborate in the eighth topic of the book: “New methods for diagnostic tools and prevention” and  is also a part of the seventh topic, “Advanced therapies“.

New methods for diagnostic tools and prevention” is a highly interdisciplinary area, with a wide range in areas of research, methodologies and applications. It consists on contributions according to imaging modality for diagnostics, detection/screening methods, and prevention and personalised treatments.

The chapter mentions GAB efforts to develop biocompatible and biodegradable implants for neurological applica-tions, and wearable devices (implants and external) for the real time and continuous monitoring, and early diagnosis for in vivo applications. .

As for Organ-on-chips, it contains GAB‘s research in 3D microfluidics and sensors integration to simulate organ and tissuspecific micro-environments. These systems are applied for toxicological stud-ies and personalized medicine and represent a clear alternative to minimize animal experimentation.

In “Advanced therapies” the research in instrumentation for proton tomography and proton-range verification using prompt gamma rays is highly studied.

Biomedicine and Health

A lesson learnt from the pandemia caused by coronavirus is that solutions in health require coordinated actions. Beside this and other (re)emerging infectious diseases, Spain and Europe are suffering a plethora of disorders that are currently acquiring epidemic dimensions, including cancer, rare diseases, pain and food allergies, among others. New tools for prevention, diagnosis and treatment need to be urgently designed and implemented using new holistic and multidisciplinary approaches involving researchers, clinicians, industry and all stakeholders in the health system.

CSIC White Papers

What are the major scientific challenges of the first half of the 21st century? Can we establish the priorities for the future? How should the scientific community tackle them? This book presents the reflections of the Spanish National Research Council (CSIC) on 14 strategic themes established on the basis of their scientific impact and social importance.

Read More